[发明专利]一种基于判别感知融合的行人再识别方法有效
| 申请号: | 201910060407.6 | 申请日: | 2019-01-22 |
| 公开(公告)号: | CN109784288B | 公开(公告)日: | 2023-01-06 |
| 发明(设计)人: | 张重;司统振;刘爽 | 申请(专利权)人: | 天津师范大学 |
| 主分类号: | G06V40/10 | 分类号: | G06V40/10;G06V10/764;G06N3/04 |
| 代理公司: | 北京中政联科专利代理事务所(普通合伙) 11489 | 代理人: | 陈超 |
| 地址: | 300387 *** | 国省代码: | 天津;12 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明实施例公开了一种基于判别感知融合的行人再识别方法,该方法包括:确定行人图像特征深度学习模型;获取M个数据源,基于其得到M个行人图像特征深度学习模型;获取每个训练行人图像样本的M个特征向量,提取每个特征向量相同维度的元素值形成新特征向量;将所述训练行人图像样本同一维度形成的新特征向量输入到支持向量机中,学习得到融合权重;结合行人图像特征深度学习模型和融合权重得到测试行人图像样本的最终特征表达;搜索目标图像得到行人识别结果。本发明充分利用卷积神经网络的优势,利用不同的训练样本从不同的角度学习图像特征,最终利用学习的融合权重将多个特征融合在一起表示行人图像,进一步提高了行人再识别的正确搜索率。 | ||
| 搜索关键词: | 一种 基于 判别 感知 融合 行人 识别 方法 | ||
【主权项】:
1.一种基于判别感知融合的行人再识别方法,其特征在于,所述方法包括以下步骤:步骤S1,利用预训练深度学习模型确定行人图像特征深度学习模型;步骤S2,在训练集中随机选取P个行人图像样本作为一个新的数据源,重复该随机选取过程M次,得到M个新的数据源;步骤S3,对得到的M个数据源进行预处理,并利用预处理后的M个数据源,分别独立地训练所述行人图像特征深度学习模型,得到M个训练好的行人图像特征深度学习模型;步骤S4,基于训练好的M个行人图像特征深度学习模型,获取每个训练行人图像样本的M个特征向量,然后提取每个特征向量相同维度的元素值形成相应训练行人图像样本的新的特征向量;步骤S5,将所述训练行人图像样本同一维度形成的新特征向量输入到支持向量机中,学习得到融合权重,用以对于M个特征向量进行融合得到最终特征表达;步骤S6,将测试集中的测试行人图像样本输入至训练好的M个行人图像特征深度学习模型中提取得到所述测试行人图像样本的M个特征向量,结合所述融合权重得到所述测试行人图像样本的最终特征表达;步骤S7,基于获得的测试行人图像样本的最终特征表达,在测试集中搜索与所述最终特征表达相匹配的行人图像作为目标图像,得到行人识别结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津师范大学,未经天津师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910060407.6/,转载请声明来源钻瓜专利网。





