[发明专利]一种工业零部件表面裂纹的多目标检测方法在审
申请号: | 201811528884.2 | 申请日: | 2018-12-14 |
公开(公告)号: | CN109671064A | 公开(公告)日: | 2019-04-23 |
发明(设计)人: | 薛林;陈相吉;崔允浩;黑俊铭 | 申请(专利权)人: | 大连理工大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00 |
代理公司: | 大连理工大学专利中心 21200 | 代理人: | 温福雪;侯明远 |
地址: | 116024 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种工业零部件表面裂纹的多目标检测方法,识别出图像中的裂纹,并获取裂纹的位置和尺寸信息,用以代替人工检测裂纹的工作。本发明可以利用目标检测和图像处理技术解决工业零部件表面裂纹的多目标检测的问题,一定程度代替人工检测。另外本发明可以通过增大训练集数据量,强化网络的识别能力,增强方法的适用性。 | ||
搜索关键词: | 多目标检测 工业零部件 表面裂纹 人工检测 图像处理技术 训练集数据 尺寸信息 目标检测 图像 网络 | ||
【主权项】:
1.一种工业零部件表面裂纹的多目标检测方法,其特征在于,步骤如下:(1)收集整理裂纹的图像数据,对图像中的裂纹进行人工标注,建立样本库,将样本库分为训练集、验证集和测试集;(2)根据YOLOv3算法建立深度目标检测神经网络模型,使用样本库中训练集对所建立的YOLOv3深度目标检测神经网络模型进行训练;(3)通过验证集对YOLOv3深度目标检测神经网络模型的检测效果进行验证,不断调试得到YOLOv3深度目标检测神经网络模型的连接权重与偏置参数;(4)利用步骤(3)得到的YOLOv3深度目标检测神经网络模型,对测试集中的图像I进行检测,识别出多个裂纹并获取其位置信息,同时生成裂纹的外接水平矩形框,得到矩形的左上角点坐标(Xmin,Ymin)和右下角点坐标(Xmax,Ymax);(5)对步骤(4)中识别得到的矩形框,根据左上角点和右下角点进行裁剪操作,得到一个新的以检测得到的裂纹为主体的小尺寸图像In,n表示裂纹的序号;(6)将步骤(5)裁剪的图像In转为灰度图,再对其进行高斯模糊的处理,得到图像I′n;(7)采用Otsu法对图像I′n进行二值化处理,再对其处理结果进行黑白像素转换,即将灰度值为255的像素变为灰度值为0,灰度值为0的像素变为灰度值为255,得到图像I″n;(8)根据图像I″n找到裂纹的轮廓点集,再由轮廓点集得到裂纹的最小外接矩形,同时输出最小外接矩形的信息,矩形中心(Xc,Yc),矩形的宽高(W,H),旋转角度θ;(9)根据得到步骤(8)的结果,在原图I中画出裂纹的最小外接矩形,由于经过了图像的变换,所以矩形中心点的坐标为:X=Xc+XminY=Yc+Ymin。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连理工大学,未经大连理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811528884.2/,转载请声明来源钻瓜专利网。