[发明专利]一种针对硬件实现稀疏化卷积神经网络推断的加速方法有效
| 申请号: | 201811486547.1 | 申请日: | 2018-12-06 |
| 公开(公告)号: | CN109711532B | 公开(公告)日: | 2023-05-12 |
| 发明(设计)人: | 陆生礼;庞伟;吴成路;范雪梅;舒程昊;梁彪 | 申请(专利权)人: | 东南大学;东南大学—无锡集成电路技术研究所;南京三宝科技股份有限公司 |
| 主分类号: | G06N3/082 | 分类号: | G06N3/082;G06N3/084;G06N3/0464 |
| 代理公司: | 南京经纬专利商标代理有限公司 32200 | 代理人: | 葛潇敏 |
| 地址: | 214135 江*** | 国省代码: | 江苏;32 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开一种针对硬件实现稀疏化卷积神经网络推断的加速方法,包括面对稀疏硬件加速架构的分组剪枝参数确定方法、针对稀疏硬件加速架构的分组剪枝训练方法和针对稀疏化卷积神经网络前向推断的部署方法:根据硬件架构中乘法器数量确定分组剪枝的分组长度和剪枝率,基于量级裁剪方式将压缩率以外的权值进行裁剪,通过增量训练方式提升剪枝后的网络准确率及压缩率,剪枝过的网络经微调后保存非剪枝位置的权值和索引参数并送入硬件架构下的计算单元中,计算单元同时获取分组长度的激活值完成稀疏网络前向推断。本发明基于硬件架构出发设定算法层面的剪枝参数与剪枝策略,有益于降低稀疏加速器的逻辑复杂度提高稀疏加速器前向推断的整体效率。 | ||
| 搜索关键词: | 一种 针对 硬件 实现 稀疏 卷积 神经网络 推断 加速 方法 | ||
【主权项】:
1.一种针对硬件实现稀疏化卷积神经网络推断的加速方法,其特征在于:首先确定分组剪枝参数,然后基于确定的参数训练卷积神经网络,最后构建针对稀疏化卷积神经网络前向推断的整体架构。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学;东南大学—无锡集成电路技术研究所;南京三宝科技股份有限公司,未经东南大学;东南大学—无锡集成电路技术研究所;南京三宝科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811486547.1/,转载请声明来源钻瓜专利网。





