[发明专利]基于对抗学习和注意力机制的视频超分辨率方法有效
申请号: | 201811442708.7 | 申请日: | 2018-11-29 |
公开(公告)号: | CN109636721B | 公开(公告)日: | 2023-06-23 |
发明(设计)人: | 王浩哲;陈艳姣;谈震威 | 申请(专利权)人: | 武汉大学 |
主分类号: | G06T3/40 | 分类号: | G06T3/40 |
代理公司: | 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 | 代理人: | 鲁力 |
地址: | 430072 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 针对视频分辨率传统方法中计算开销大、计算效率低、不能高效处理长序列的缺点,本发明公开了一种端到端的基于对抗学习和注意力机制的视频超分辨率方法。本发明采用临帧融合与注意力机制提取时空相关性,采用循环结构以一次性处理长序列,可以获得富于细节、时序连贯的高分辨率重建视频。本发明的有益效果为:1、本发明提出了一种新颖的基于注意力机制和对抗学习的视频超分辨率方法,提升了超分辨率的效果;2、本发明提出的基于注意力机制和对抗学习的视频超分辨率方法效果更好;3、本发明有助于视频超分辨率被应用于实际场景中,如应用于监控设备,卫星影像。 | ||
搜索关键词: | 基于 对抗 学习 注意力 机制 视频 分辨率 方法 | ||
【主权项】:
1.一种基于对抗学习和注意力机制的视频超分辨率方法,其特征在于,具体步骤如下:步骤1、构建深度神经网络,包括构造生成网络、判别网络Dt以及判别网络Da;步骤2、训练深度神经网络,具体是基于损失函数,使用公开的、自然场景下的高分辨率视频数据集,训练构造好的神经网络,得到训练好的深度神经网络;步骤3、利用训练好的模型进行视频超分辨率,具体是首先获取需要进行超分辨率的视频集,将所要处理的视频输入步骤2中训练好的深度神经网络中,获得最终的结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉大学,未经武汉大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811442708.7/,转载请声明来源钻瓜专利网。