[发明专利]一种基于卷积神经网络检测CT图像的方法有效
申请号: | 201811316415.4 | 申请日: | 2018-11-06 |
公开(公告)号: | CN109492690B | 公开(公告)日: | 2021-11-30 |
发明(设计)人: | 黄文恺;胡凌恺;何杰贤;彭广龙;薛义豪;吴羽;朱静 | 申请(专利权)人: | 广州大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G16H50/20 |
代理公司: | 广州三环专利商标代理有限公司 44202 | 代理人: | 颜希文;罗尧 |
地址: | 510000 广东省广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于卷积神经网络检测CT图像的方法,包括如下步骤:S1、提供病人的CT图像、基因组表达谱、蛋白质表达谱、吸烟情况和工作环境信息,并对CT图像进行标注获得数据集;S2、根据步骤S1所述信息搭建一个主要神经网络和四个次要神经网络,其中,主要神经网络以卷积神经网络为主体,四个次要神经网络分别用于分析基因组表达谱、蛋白质表达谱、吸烟情况和工作环境对病人病情影响的大小并输出相应的权值;S3、用已标注的数据集对所述主要神经网络进行训练,代入所述次要神经网络输出的权值,以判断病人的CT图像是否具有肺癌相应特征。采用本发明的方法检测CT图像,可以辅助医生显著提高肺癌诊断的准确率和效率。 | ||
搜索关键词: | 一种 基于 卷积 神经网络 检测 ct 图像 方法 | ||
【主权项】:
1.一种基于卷积神经网络检测CT图像的方法,其特征在于,包括如下步骤:S1、提供病人的CT图像、基因组表达谱、蛋白质表达谱、吸烟情况和工作环境信息,并对CT图像进行标注获得数据集;S2、根据步骤S1所述信息搭建一个主要神经网络和四个次要神经网络,其中,主要神经网络以卷积神经网络为主体,四个次要神经网络分别用于分析基因组表达谱、蛋白质表达谱、吸烟情况和工作环境对病人病情影响的大小并输出相应的权值;S3、用已标注的数据集对所述主要神经网络进行训练,代入所述次要神经网络输出的权值,以判断病人的CT图像是否具有肺癌相应特征。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广州大学,未经广州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811316415.4/,转载请声明来源钻瓜专利网。
- 上一篇:一种电动汽车故障诊断方法
- 下一篇:一种超图卷积网络模型及其半监督分类方法