[发明专利]联合深度学习和语义概率的不透水面提取方法及系统有效
| 申请号: | 201810809896.6 | 申请日: | 2018-07-23 |
| 公开(公告)号: | CN108985238B | 公开(公告)日: | 2021-10-22 |
| 发明(设计)人: | 邵振峰;王磊 | 申请(专利权)人: | 武汉大学 |
| 主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
| 代理公司: | 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 | 代理人: | 严彦 |
| 地址: | 430072 湖*** | 国省代码: | 湖北;42 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 一种联合深度学习和语义概率的高分辨率遥感影像不透水面提取方法及系统,获取目标区域的高分辨率遥感影像,进行影像数据归一化,分为样本影像和测试影像;构建深度卷积网络,提取各样本影像的影像特征,所述深度卷积网络由多层卷积层、池化层以及对应的反池化和反卷积层构成;对各样本影像分别进行逐像素类别预测,利用预测值与真值之间的误差构建损失函数,对网络参数进行更新训练;对测试影像通过深度卷积网络提取影像特征,进行逐像素类别预测,然后利用像素点之间的语义关联信息构建影像的条件随机场模型,对测试影像预测结果进行全局优化,得到提取结果。本发明能够对遥感影像进行精确地自动化不透水面提取,符合实际的城市规划应用需求。 | ||
| 搜索关键词: | 联合 深度 学习 语义 概率 不透 水面 提取 方法 系统 | ||
【主权项】:
1.一种联合深度学习和语义概率的高分辨率遥感影像不透水面提取方法,其特征在于,包括以下步骤:步骤一、获取目标区域的高分辨率遥感影像,进行影像数据归一化,并将所得归一化后的目标区域影像分为样本影像和测试影像两部分;步骤二、构建用于高分辨率遥感影像特征提取的深度卷积网络,提取各样本影像的影像特征;所述深度卷积网络由多层卷积层、池化层以及对应的反池化和反卷积层构成;步骤三、利用提取所得的影像特征,对各样本影像分别进行逐像素类别预测;步骤四、利用样本影像的预测值与真值之间的误差构建损失函数,并对深度卷积网络的网络参数和类别预测相关网络参数进行更新训练;步骤五、利用步骤四的训练结果,对测试影像通过深度卷积网络提取影像特征,利用提取所得的影像特征进行逐像素类别预测,然后利用像素点之间的语义关联信息构建影像的条件随机场模型,对测试影像预测结果进行全局优化,得到分类结果,实现提取不透水面。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉大学,未经武汉大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810809896.6/,转载请声明来源钻瓜专利网。
- 上一篇:一种基于深度混合的小麦赤霉病的检测方法及其系统
- 下一篇:汽车人脸交互系统





