[发明专利]一种基于深度学习的垃圾文本过滤方法有效
申请号: | 201810557803.5 | 申请日: | 2018-06-01 |
公开(公告)号: | CN108805132B | 公开(公告)日: | 2021-08-20 |
发明(设计)人: | 冯丹;尹祎;施展;苏毅 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G06K9/34 | 分类号: | G06K9/34;G06K9/62 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 李智;曹葆青 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的垃圾文本过滤方法,先对字符数据进行过滤,去除非必要的符号、空格及语气助词,根据垃圾文本中存在的不同数据类型进行分类,将字符数据和图形数据分别通过标记加以区分,但不改变两类数据的顺序和位置,将图形数据通过深度学习算法转换成字符数据,数据转换为深度学习方法的一个重要组成部分,结合原字符数据通过深度学习算法与云服务器中的违禁词进行对比得到垃圾文本,文本对比为深度学习方法的一个重要推广,能够做到有效的深度拦截和提示。本发明有效解决了现有的文本过滤方法不能很好筛选出由字符数据和图形数据共同组成的垃圾文本问题,将深度学习算法应用到垃圾文本处理,提高了筛选的准确率。 | ||
搜索关键词: | 一种 基于 深度 学习 垃圾 文本 过滤 方法 | ||
【主权项】:
1.一种基于深度学习的垃圾文本过滤方法,其特征在于,包括:对待识别文本中的数据进行拆分,在数据拆分的过程中,在每个字符之间填入预设字符,以区别原字符数据和图形数据,并对原字符数据和图形数据的顺序和位置进行标记;通过第一深度学习算法将拆分出的所述图形数据中包含的文本信息转换为目标字符数据;将所述目标字符数据与所述待识别文本中的原字符数据按照标记的顺序排序后得到目标文本,然后由第二深度学习算法训练得到的垃圾字符识别模型通过排序后的上下文字符内容识别所述目标文本是否含有垃圾字符;若所述目标文本中含有垃圾字符,则判断所述目标文本中含有的垃圾字符与云服务器中所设定的垃圾字符及包含设定垃圾字符的文本信息是否匹配,若匹配则识别所述待识别文本为垃圾文本,若不匹配,则识别所述待识别文本不是垃圾文本。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810557803.5/,转载请声明来源钻瓜专利网。
- 上一篇:文本行检测方法、装置及系统
- 下一篇:一种主动脉夹层分割模型的构建方法及应用