[发明专利]一种深度神经网络模型的构建方法和装置有效

专利信息
申请号: 201810465595.6 申请日: 2018-05-16
公开(公告)号: CN108921282B 公开(公告)日: 2022-05-31
发明(设计)人: 何文奇;海涵;彭翔;刘晓利;廖美华;卢大江 申请(专利权)人: 深圳大学
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08
代理公司: 深圳市恒申知识产权事务所(普通合伙) 44312 代理人: 王利彬
地址: 518060 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种深度神经网络模型的构建方法和装置。对原始数据进行随机相位加密得到训练数据,利用训练数据训练第i‑1深度神经网络模型,得到第i深度神经网络模型,将训练数据输入第i深度神经网络模型得到第i输出结果,与训练数据对应的原始数据进行比对,判断比对结果是否满足预设收敛条件,若满足,则确定第i深度神经网络模型为构建的深度神经网络模型,若不满足,则令i=i+1,重新利用训练数据训练第i‑1深度神经网络模型。由于训练数据输入到深度神经网络模型中,得到的输出结果是与原始数据进行比对的,因此该模型为能够破解随机相位加密的解密模型,解决了缺少能破解随机相位加密的算法模型的技术问题。
搜索关键词: 一种 深度 神经网络 模型 构建 方法 装置
【主权项】:
1.一种深度神经网络模型的构建方法,其特征在于,所述方法包括:步骤A、对多组原始数据进行随机相位加密得到训练数据;步骤B、利用所述训练数据训练第i‑1深度神经网络模型,得到第i深度神经网络模型,及所述训练数据输入所述第i深度神经网络模型后的第i输出结果,并将所述第i输出结果与所述训练数据对应的原始数据进行比对,得到第i比对结果,所述i的初始值为1,且第0深度神经网络模型为初始模型;步骤C、当所述第i比对结果满足预设收敛条件时,确定所述第i深度神经网络模型为构建的深度神经网络模型;步骤D、当所述第i比对结果不满足所述预设收敛条件时,令i=i+1,返回执行所述步骤B。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳大学,未经深圳大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810465595.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top