[发明专利]一种基于自然场景统计的深度图像质量无参考评价方法有效

专利信息
申请号: 201810069331.9 申请日: 2018-01-24
公开(公告)号: CN108257125B 公开(公告)日: 2022-04-29
发明(设计)人: 李雷达;陈曦;卢兆林;周玉;祝汉城;胡波 申请(专利权)人: 中国矿业大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/13
代理公司: 南京瑞弘专利商标事务所(普通合伙) 32249 代理人: 杨晓玲
地址: 221116 江苏省徐*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出一种基于自然场景统计的深度图像质量无参考评价方法,包括步骤:(1)收集一组深度图像,并将收集来的深度图像分为两部分,一部分为训练图像,另一部分为测试图像;(2)对每一幅深度图像进行不同尺度上的特征参数提取,提取的步骤为:通过边缘检测提取尺度图像的边缘区域,在边缘区域内求尺度图像梯度幅值和高斯‑拉普拉斯算子的分布,并分别用韦伯分布和非对称高斯分布建立二者的分布函数模型,将两个模型的参数作为深度图像的特征参数;(3)最后,用训练图像的特征参数进行随机森林模型训练,生成客观质量分数评价模型;将测试图像的特征参数输入客观质量分数评价模型,得到测试图像的客观质量分数。
搜索关键词: 一种 基于 自然 场景 统计 深度 图像 质量 参考 评价 方法
【主权项】:
1.一种基于自然场景统计的深度图像质量无参考评价方法,其特征在于,包括步骤:(1)收集一组深度图像,并将收集来的深度图像分为两部分,一部分为训练图像,另一部分为测试图像;(2)对训练图像和测试图像中的每一幅深度图像分别执行步骤:(2‑1)定义原始深度图像为尺度图像0;对原始深度图像分别进行n次高斯低通滤波,并记第i次的滤波结果为尺度图像i+1,i∈[1,2,…,n];尺度图像0至n形成具有n+1个尺度的尺度空间;(2‑2)对尺度图像0至n分别进行特征参数提取,包括步骤:对尺度图像i进行边缘检测,提取尺度图像i的边缘区域,i∈[0,2,…,n];在边缘失真区域内求各像素点的梯度幅值和高斯‑拉普拉斯算子;用韦伯分布拟合边缘失真区域内的梯度幅值分布,得到梯度幅值的韦伯分布函数;用非对称高斯分布拟合边缘失真区域内的高斯‑拉普拉斯算子分布,得到高斯‑拉普拉斯算子的非对称高斯分布函数;提取韦伯分布函数的比例参数和形状参数,以及提取非对称高斯分布函数的均值、形状参数、左尺度参数、右尺度参数;将提取出的6个参数作为尺度图像i的特征参数;(3)将训练图像的特征参数作为随机森林模型的输入数据,训练出客观质量分数评价模型;(4)将测试图像的特征参数作为客观质量分数评价模型的输入数据,得到测试图像的客观质量分数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国矿业大学,未经中国矿业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810069331.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top