[发明专利]基于神经网络优化角砾地层中盾构机运行轨迹参数的方法有效
申请号: | 201711495121.8 | 申请日: | 2017-12-31 |
公开(公告)号: | CN108710940B | 公开(公告)日: | 2022-02-01 |
发明(设计)人: | 李英伟;王小云;李琼;程勇;刘玉龙 | 申请(专利权)人: | 中交一公局集团有限公司;中交一公局桥隧工程有限公司 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/06;G06N3/08;G06N3/12 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 沈波 |
地址: | 100124*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了基于神经网络优化角砾地层中盾构机运行轨迹参数的方法,针对盾构机运行轨迹指的是隧道管片拼装线路,收集角砾地层隧道施工中的盾构设备的构造、配置,实际推进的姿态参数、拼装的隧道管片的姿态数据等,并考虑隧道管片沉降、收敛等监测数据,利用Matlab编程软件中的智能的神经网络方法训练出一个满足角砾地层盾构姿态调整的经验模式,使这个经验模式成为实际预测盾构机运行轨迹的重要借鉴和参考,并以此为基础,评价盾构机实际运行操作参数的合理性。本发明中提出的隧道管片拼装线路神经网络预测模型以及优化参数及其范围是对本工程良好施工效果的总结,为遇到类似工程实例的施工提供借鉴和参考。 | ||
搜索关键词: | 基于 神经网络 优化 地层 盾构 机运 轨迹 参数 方法 | ||
【主权项】:
1.基于神经网络优化角砾地层中盾构机运行轨迹参数的方法,其特征在于:利用MATLAB软件中的newff函数创建一个BP神经网络,调用格式为:net=newff(PR,[S1,S2,...SN1],{TF1,TF2,...TFN1},BTF,BLF,PF)其中,PR:由每组输入元素的最大值和最小值组成的R×2维的矩阵;每组共有R组输入;Si:第i层的传递函数,默认为“tansig”;BTF:BP网络的训练函数,默认为“trainlm”;BLF:权值和阈值学习函数,默认为“learndm”;PF:网络的性能函数,默认为“mse”;神经元上的传递函数是BP神经网络的重要组成部分;BP常采用的函数为对数函数、正切函数和线性函数;隐层节点数的确定也很关键,因为这会直接影响预测结果的精度;关于隐层数及其节点数的选择比较复杂,原则是:在能正确反映输入输出关系的基础上,应选用较少的隐层节点数,以使网络结构尽量简单;采用网络结构增长型方法,即先设置较少的节点数,对网络进行训练,并测试学习误差,然后逐渐增加节点数,直到学习误差不再有明显减少为止;初定隐层节点数使用如下公式:
或者
其中,m、n分别为输入节点数目与输出节点数目;a为1~10之间的常数;编码编码是遗传算法的基础工作;遗传算法不能直接处理解空间的参数,必须将解空间映射到遗传空间,因此,必须进行编码;而解码是与编码相反的过程,是从遗传空间到解空间的转换过程;遗传算法的编码方法是二进制编码,即由二进制字符集{0,1}产生通常的0,1字符串来表示问题空间的候选解;二进制编码字符串的长度与问题所要求的精度有关;参数取值范围为[a,b],采用二进制编码,要求编码精度精确到m,即将区间[a,b]划分
份,设编码长度为S,则应满足下式
种群初始化种群规模N表示种群中个体的数量,初始群体是随机生成的N个个体,是遗传算法进行迭代的起点;种群规模较小时,算法的运算速度提高,但降低了种群的多样性,容易早熟;种群规模较大时,保证了个体的多样性,但遗传算法的效率会降低;N的取值范围为20~100;适应度函数确定在遗传算法中,以个体适应度值的大小确定个体被遗传到下一代群体中的概率大小;遗传算法中的适应度函数是用来判断群体中个体优劣性的指标,适应度越大说明个体优势越大,适应度函数又称为评价函数,根据所求问题的目标函数确定;遗传操作遗传操作包括选择、交叉、变异三个遗传算子;选择是为了从当前的种群中选出优秀的个体,直接遗传到下一代或通过交叉变异产生新的个体再遗传到下一代;选择操作的原则是适应度值越大,个体被选中的概率越大,其在下一代种群中贡献的个体越多;选择算子有多种实现方法,目前最常用的是轮盘赌选择法,也称比例选择算子;交叉算子是遗传操作的核心;交叉操作根据交叉概率随机地选择两个个体进行配对并交换部分基因,生成的两个新个体组合了父代个体的特性;交叉操作方法根据编码表示方法的不同而不同;对于二进制编码,有单点交叉、两点交叉、多点交叉、均匀交叉等;变异是指,以一定的概率随机地改变个体某些基因座上的基因值;对于二进制编码,某一基因座上的原有基因为0时,变异操作将其变为1,若原为1,则变为0;运行参数主要包括交叉概率、变异概率、进化终止代数;这些参数的选择对遗传算法的性能有很大的影响;通常根据经验进行选取;交叉概率控制着交叉操作进行的频率;交叉概率较大时,可以增强遗传算法的初期搜索新区间能力,但过大的交叉概率会过早地破坏种群的优良基因,难以搜索到最优解;交叉概率过小时,搜索会陷入停滞状态;交叉概率取0.2~0.5;变异概率控制着变异操作进行的频率;较大的变异概率能够产生很多新的个体,增加种群的多样性,但也可能破坏好的模式;变异概率较低时,产生的新个体较差,算法容易陷入早熟;变异概率取0.001~0.1;盾构机掘进参数刀盘扭矩u1、推进泵压力u2、A组油缸压力u3、B组油缸压力u4、C组油缸压力u5、D组油缸压力u6、1#注浆压力u7、2#注浆压力u8、3#注浆压力u9、4#注浆压力u10、盾尾间隙一u11、盾尾间隙二u12、盾尾间隙三u13盾尾间隙四u14、管片拼装点位u15,作为遗传算法的输入变量;选取遗传代数为100代,种群规模为80,交叉概率为0.6,变异概率为0.06;设计适应度函数:
其中,H为管片拼装高程偏位;V为管片拼装平面偏位;将参数和设计的适应度函数带入遗传算法程序,利用遗传算法进行参数反演,最终得到优化的参数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中交一公局集团有限公司;中交一公局桥隧工程有限公司,未经中交一公局集团有限公司;中交一公局桥隧工程有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711495121.8/,转载请声明来源钻瓜专利网。