[发明专利]用于卷积神经网络的高效可配置卷积计算加速器有效

专利信息
申请号: 201711414668.0 申请日: 2017-12-20
公开(公告)号: CN108108812B 公开(公告)日: 2021-12-03
发明(设计)人: 王中风;王昊楠;林军 申请(专利权)人: 南京风兴科技有限公司
主分类号: G06N3/063 分类号: G06N3/063
代理公司: 北京弘权知识产权代理有限公司 11363 代理人: 逯长明;许伟群
地址: 210032 江苏省南京市*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了用于卷积神经网络的高效可配置卷积计算加速器。该结构通过配置可以高效地实现卷积神经网络中的4种主流尺寸卷积核及12*12以下的所有尺寸的卷积计算,同时显著降低卷积计算的复杂度。本发明先介绍了基于快速FIR算法的硬件结构(FFIR),并在2并行FFIR结构上级联3并行FFIR,设计了6并行FFIR(6P‑FFIR),并使用压缩器对6P‑FFIR进行了优化。基于6P‑FFIR的结构,设计了高效可配置卷积计算加速器(RCC)。相比于传统FIR滤波器,本发明可以在实现四种主流尺寸的卷积计算时节省33%至47%的乘法计算。本架构可以节省大量的硬件面积和功耗,很适合应用在物联网、嵌入式芯片等对功耗要求严苛的场景中,同时可以运用在需要多种尺寸的卷积计算的场合,并提高系统的有效吞吐量。
搜索关键词: 用于 卷积 神经网络 高效 配置 计算 加速器
【主权项】:
1.高效可配置卷积计算加速器(RCC)结构,包括:●1个模式选择模块,用于控制模块间的数据流,完成选择3*3、5*5、7*7和11*11四种卷积计算模式中的一种;●2个快速卷积模块,用于高效地实现6并行卷积计算,该模块可以使用任意的6并行快速有限冲击响应结构(6P-FFIR)或者其优化结构;●2个补充乘法模块,用于支持快速卷积模块实现7*7卷积计算模式,每个模块包含6个乘法器;●1个数据输入模块,用于以正确顺序输入不同卷积模式下的数据;●1个数据输出模块,用于以正确顺序输出不同卷积模式下的数据,可以使用只含有加法器的电路,或者使用优化的含有压缩器和加法器的电路。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京风兴科技有限公司,未经南京风兴科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711414668.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top