[发明专利]一种基于改进深度学习的刀闸状态识别方法有效

专利信息
申请号: 201711207726.2 申请日: 2017-11-27
公开(公告)号: CN107944396B 公开(公告)日: 2021-12-28
发明(设计)人: 张金锋;朱克亮;李亮;汪和龙;孙明刚;钱朝军;桂亮;孙楷淇;王磊;席照才;邵先锋;王振海;唐杰;张骥;马玲官;李强;朱能富 申请(专利权)人: 国网安徽省电力有限公司经济技术研究院;安徽南瑞继远电网技术有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06K9/32;G06K9/44;G06K9/46;G06K9/62
代理公司: 暂无信息 代理人: 暂无信息
地址: 230022 安*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于改进深度学习的刀闸状态识别方法,包括以下步骤:获取训练模型;通过训练模型对输入图像进行预测获得预测框的概率;利用滑动窗口策略选择候选区域并获得标签;对候选区域进行删选获取候选矩形框;对候选矩形框进行直线拟合得到精确矩形框;对精确矩形框内的刀闸和绝缘子状态进行判断,完成刀闸状态的识别。本发明采用基于空间加权的池化策略改进的卷积神经网络在图像集上获得训练模型;然后通过训练模型来检测绝缘子和刀闸的潜在位置,依据与绝缘子的连通性来识别多种刀闸的闭合或断开状态,能够精确地定位绝缘子和刀闸的位置,显著提高刀闸状态识别的精度。
搜索关键词: 一种 基于 改进 深度 学习 状态 识别 方法
【主权项】:
一种基于改进深度学习的刀闸状态识别方法,其特征在于,包括以下步骤:获取训练模型;通过训练模型对输入图像进行预测获得预测框的概率;利用滑动窗口策略选择候选区域并获得标签;对候选区域进行删选获取候选矩形框;对候选矩形框进行直线拟合得到精确矩形框;对精确矩形框内的刀闸和绝缘子状态进行判断,完成刀闸状态的识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网安徽省电力有限公司经济技术研究院;安徽南瑞继远电网技术有限公司,未经国网安徽省电力有限公司经济技术研究院;安徽南瑞继远电网技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711207726.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top