[发明专利]一种大数据跨领域分析的深度迁移学习方法在审

专利信息
申请号: 201711184963.1 申请日: 2017-11-23
公开(公告)号: CN107704926A 公开(公告)日: 2018-02-16
发明(设计)人: 龙明盛;王建民;树扬;黄向东 申请(专利权)人: 清华大学
主分类号: G06N3/08 分类号: G06N3/08
代理公司: 北京路浩知识产权代理有限公司11002 代理人: 王莹,吴欢燕
地址: 100084 北京市海*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种大数据跨领域分析的深度迁移学习方法,通过根据联合分布差异和分类错误率,确定深度网络的损失函数的值,其中,联合分布差异为源域对应的所有任务相关层中的特征以及标签之间的联合概率分布与目标域对应的所有任务相关层中的特征以及标签之间的联合概率分布之间的分布差异;并基于损失函数的值,更新深度网络的参数,以使深度网络适配目标域;从而在对深度网络的迁移学习过程中,将联合分布差异作为深度网络的损失函数的值的组成部分,通过更新深度网络的参数,在保证源域准确率的同时实现源域和目标域联合分布的匹配,即提高了所有任务相关层的迁移能力,从而给深度网络在不同领域间的迁移学习带来更好的效果。
搜索关键词: 一种 数据 领域 分析 深度 迁移 学习方法
【主权项】:
一种大数据跨领域分析的深度迁移学习方法,其特征在于,包括:确定第一联合概率分布与第二联合概率分布之间的联合分布差异,所述第一联合概率分布为源域的样本在深度网络的所有任务相关层中的特征以及标签之间的联合概率分布,所述第二联合概率分布为目标域的样本在所述深度网络的所有任务相关层中的特征以及标签之间的联合概率分布,所述任务相关层为所述深度网络的上层;确定对所述源域的样本的分类错误率;根据所述联合分布差异和所述分类错误率,确定所述深度网络的损失函数的值;基于所述损失函数的值,更新所述深度网络的参数,以使所述深度网络适配所述目标域。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711184963.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top