[发明专利]一种深度学习模式下的岩石岩性自动识别分类方法有效
申请号: | 201710685681.3 | 申请日: | 2017-08-11 |
公开(公告)号: | CN107633255B | 公开(公告)日: | 2021-05-25 |
发明(设计)人: | 李明超;张野;韩帅 | 申请(专利权)人: | 天津大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/66;G06N3/04 |
代理公司: | 天津市北洋有限责任专利代理事务所 12201 | 代理人: | 刘玥 |
地址: | 300350 天津市津南区海*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种深度学习模式下的岩石岩性自动识别分类方法,用以分析地质工程中的岩石岩性,包括以下步骤:步骤A,根据所需岩石种类,采集不同类型的岩石图像,并将其分为训练集与测试集;步骤B,采用卷积神经网络Inception‑v3模型作为预训练模型,利用其特征提取模型获取图像特征;步骤C,建立Softmax回归模型;步骤D,训练岩石图像自动识别与分类模型;步骤E,测试岩石图像自动识别与分类模型。本发明通过建立岩石图像自动识别与分类模型,可以自动化、智能化地分析工程中的地质状况,大大节省人力物力,减少成本支出。 | ||
搜索关键词: | 一种 深度 学习 模式 岩石 自动识别 分类 方法 | ||
【主权项】:
一种深度学习模式下的岩石岩性自动识别分类方法,其特征在于,包括以下步骤:步骤A,根据所需岩石种类,采集不同类型的岩石图像,并将其分为训练集与测试集;步骤B,采用卷积神经网络Inception‑v3模型作为预训练模型,利用其特征提取模型获取图像特征;步骤C,建立Softmax回归模型;步骤D,训练岩石图像自动识别与分类模型;步骤E,测试岩石图像自动识别与分类模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710685681.3/,转载请声明来源钻瓜专利网。