[发明专利]基于向量处理器的深度神经网络多核加速实现方法有效
申请号: | 201710384961.0 | 申请日: | 2017-05-26 |
公开(公告)号: | CN107301456B | 公开(公告)日: | 2020-05-12 |
发明(设计)人: | 郭阳;张军阳;扈啸;王慧丽;胡敏慧 | 申请(专利权)人: | 中国人民解放军国防科学技术大学 |
主分类号: | G06N3/063 | 分类号: | G06N3/063;G06N3/04;G06F15/80 |
代理公司: | 湖南兆弘专利事务所(普通合伙) 43008 | 代理人: | 周长清;胡君 |
地址: | 410073 *** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于向量处理器的深度神经网络多核加速实现方法,步骤包括:S1.将待处理数据按一维向量输出,并作为输入值输入至目标深度神经网络;S2.由向量处理器中各个核依次计算目标深度神经网络中相邻两个隐层的权值矩阵,每次计算时,将输入值广播至各个核内的标量存储体中,同时加载相邻两个隐层的权值矩阵,将加载的权值矩阵进行划分后分别传输至各个核内的向量存储体中,启动各个核并行计算后得到多个向量计算结果并作为下一次计算的输入值。本发明实现方法简单、所需成本低、能够充分利用多核向量处理器的特性实现DNN的并行加速,并行性以及加速效果好等优点。 | ||
搜索关键词: | 基于 向量 处理器 深度 神经网络 多核 加速 实现 方法 | ||
【主权项】:
一种基于向量处理器的深度神经网络多核加速实现方法,其特征在于步骤包括:S1.将待处理数据按一维向量输出,并作为输入值输入至目标深度神经网络;S2.由向量处理器中各个核依次计算目标深度神经网络中相邻两个隐层的权值矩阵,每次计算时,将输入值广播至各个核内的标量存储体中,同时加载相邻两个隐层的权值矩阵,将加载的所述权值矩阵进行划分后分别传输至各个核内的向量存储体中,启动各个核并行计算后得到多个向量计算结果并作为下一次计算的输入值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军国防科学技术大学,未经中国人民解放军国防科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710384961.0/,转载请声明来源钻瓜专利网。