[发明专利]一种基于全卷积神经网络的皮肤镜图像自动分割方法有效
申请号: | 201710293033.3 | 申请日: | 2017-04-28 |
公开(公告)号: | CN107203999B | 公开(公告)日: | 2020-01-24 |
发明(设计)人: | 谢凤英;范海地;姜志国 | 申请(专利权)人: | 北京航空航天大学 |
主分类号: | G06T7/11 | 分类号: | G06T7/11;G06T7/00;G06N3/08;G06N3/04 |
代理公司: | 11232 北京慧泉知识产权代理有限公司 | 代理人: | 王顺荣;唐爱华 |
地址: | 100191*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于全卷积神经网络的皮肤镜图像自动分割方法,该方法包括以下四个步骤:1:皮肤镜图像与真值图获取;2:全卷积神经网络结构设计;3:特征融合与逐像素分割方法设计;4:网络训练与分割;通过以上步骤,训练得到一个端到端的深度卷积神经网络,能够对皮肤镜图像做精准分割,同时对小面积皮损区域有效,解决了皮肤科计算机辅助诊断系统中,皮损区域分割不佳,影响后续诊断准确性的实际问题。 | ||
搜索关键词: | 卷积神经网络 皮肤 图像 计算机辅助诊断系统 神经网络结构 皮肤科 区域分割 实际问题 特征融合 网络训练 像素分割 自动分割 分割 卷积 诊断 | ||
【主权项】:
1.一种基于全卷积神经网络的皮肤镜图像自动分割方法,其特征在于:该方法包括以下四个步骤:/n步骤1:皮肤镜图像与真值图获取/n①所用图像来源于医院专业皮肤镜设备拍摄得到的图像及网上公开的皮肤镜图像数据集,共9000幅,其中恶性1200幅,良性7800幅;/n②对于每一幅图像,由专业皮肤科医生手动分割得到真值图;在真值图中,用0代表健康皮肤区域,1代表皮损区域;/n步骤2:全卷积神经网络结构设计/n典型的全卷积神经网络通过分层计算特征图得到分割结果,各层通过卷积核在本层特征图上的卷积计算得到下一层的特征图像;设x
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710293033.3/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序