[发明专利]一种基于多源融合数据的高速公路交通流参数修正方法有效

专利信息
申请号: 201611076605.4 申请日: 2016-11-29
公开(公告)号: CN106781457B 公开(公告)日: 2019-04-30
发明(设计)人: 李林超;张健;冉斌;张小丽;曲栩;黄帅凤 申请(专利权)人: 东南大学
主分类号: G08G1/01 分类号: G08G1/01
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 王安琪
地址: 210096 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于多源融合数据的高速公路交通流参数修正方法,包括如下步骤:(1)从相应的交通流检测设备和气象检测设备中提取交通流参数数据和气象数据,并对数据进行时间和空间维度的匹配;(2)对缺失数据进行筛选;(3)对数据进行修复建模;(4)对数据进行修复;(5)数据返归一化;将返归一化结果数据插入到矩阵X的相应位置,得到完整的数据矩阵。本发明的有益效果为:充分利用数据信息,包括缺失数据中数据的信息,对缺失数据进行修正;考虑天气因素对交通流的影响,可以提高修复精度;提出的算法简单明了,能够满足实时处理的要求。
搜索关键词: 一种 基于 融合 数据 高速公路 通流 参数 修正 方法
【主权项】:
1.一种基于多源融合数据的高速公路交通流参数修正方法,其特征在于,包括如下步骤:(1)从相应的交通流检测设备和气象检测设备中提取交通流参数数据和气象数据,并对数据进行时间和空间维度的匹配;(2)对缺失数据进行筛选;(3)对数据进行修复建模;具体包括如下步骤:(a)记录缺失数据所在行的编号集合M,将其从数据矩阵X中提取出来为数据矩阵Xmiss,其余数据组成新的数据矩阵X′,然后将矩阵进行归一化处理;针对数据矩阵X′,随机产生30%的交通流缺失数据,记录缺失数据所在行的编号集合M′,将其从数据矩阵X′中提取出来构成新的数据矩阵为X′test,剩余数据矩阵为X′train;(b)基于多元时间序列模型和数据矩阵X′train分别建立各项交通流数据与气象数据的回归方程,包括模型一:流量与湿度、风速、降雨量、温度的回归方程;模型二:速度与流量、湿度、风速、降雨量、温度的回归方程;模型三:占有率与速度、流量、湿度、风速、降雨量、温度的回归方程;所述的多元时间序列如下式:yt=δ+Φ1yt‑1+…+Φpyt‑pt‑Θ1εt‑1‑…‑Θpεt‑p式中:yt=(y1t,...,ykt)′,t=0,1,...表示k维时间序列向量;ykt表示第k个变量在t时刻的观测值;εt=(ε1t,...,εkt)′为白噪声向量,当t≠s时,满足E(εt)=0,E(εtε′s)=0;Φ1,...,Φp,Θ1,...,Θp为模型中需求解的参数矩阵;(c)将集合X′test中对应变量的数据依次带入到模型一、二、三中计算交通流参数的数值,得到交通流参数数据矩阵Y={yij},并将数据按照其时间位置插入到数据矩阵X′train中得到数据矩阵X″train;(d)对数据矩阵X″train,按照时间进行降序排列,得到数据矩阵X″′train和缺失数据编号集合M″;利用多元时间序列模型和数据矩阵X″′train分别建立各项交通流数据与气象数据的回归方程,包括模型四:流量与速度、占有率、湿度、风速、降雨量、温度的回归方程;模型五:速度与流量、占有率、湿度、风速、降雨量、温度的回归方程;模型六:占有率与速度、流量、湿度、风速、降雨量、温度回归方程;(e)将集合M″中的数据依次带入到模型四、五、六中计算缺失的交通流参数数据,得到数据矩阵Y′={y′ij};(f)设数据矩阵X′test中交通流参数数据矩阵为利用最小二乘原理求解下式中的参数a、b、∈:(4)对数据进行修复;(5)数据返归一化;将返归一化结果数据插入到数据矩阵X的相应位置,得到完整的数据矩阵;其中,数据矩阵其中该矩阵包含m行n列,其中m行表示时间段的个数,n列为相应的交通流参数和气象参数,表示第i列第j行的数据。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201611076605.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top