[发明专利]基于4D的航空器轨迹预测方法在审
申请号: | 201610913767.2 | 申请日: | 2015-01-07 |
公开(公告)号: | CN106297420A | 公开(公告)日: | 2017-01-04 |
发明(设计)人: | 韩云祥;赵景波;李广军 | 申请(专利权)人: | 江苏理工学院 |
主分类号: | G08G5/00 | 分类号: | G08G5/00 |
代理公司: | 常州市江海阳光知识产权代理有限公司32214 | 代理人: | 陈晓君 |
地址: | 213001 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于4D的航空器轨迹预测方法,所述空中交通管制系统包括数据通信模块、监视数据融合模块、机载终端模块、管制终端模块,其中监视数据融合模块用于实现空管雷达监视数据与自动相关监视数据的融合,为管制终端模块提供实时航迹信息;管制终端模块包括飞行前无冲突4D航迹生成、飞行中短期4D航迹生成这2个子模块;上述系统的航空器轨迹预测方法,依靠管制终端模块,处理飞行计划数据并利用隐马尔科夫模型生成4D航迹,实现空域交通状况潜在的交通冲突的分析。本发明可有效提高空中交通的安全性。 | ||
搜索关键词: | 基于 航空器 轨迹 预测 方法 | ||
【主权项】:
一种基于4D的航空器轨迹预测方法,由空中交通管制系统实施,所述空中交通管制系统包括机载终端模块、数据通信模块、监视数据融合模块以及管制终端模块;监视数据融合模块用于实现空管雷达监视数据与自动相关监视数据的融合,为管制终端模块提供实时航迹信息;其特征在于:所述管制终端模块包括以下子模块:飞行前无冲突4D航迹生成模块,根据飞行计划和世界区域预报系统的预报数据,建立航空器动力学模型,然后依据飞行冲突耦合点建立航迹冲突预调配理论模型,生成航空器无冲突4D航迹;飞行中短期4D航迹生成模块,依据监视数据融合模块提供的实时航迹信息,利用隐马尔科夫模型,推测未来一定时间窗内的航空器4D轨迹;所述基于4D的航空器轨迹预测方法包括如下几个步骤:步骤A、飞行前无冲突4D航迹生成模块根据飞行计划和世界区域预报系统的预报数据,建立航空器动力学模型,并依据飞行冲突耦合点建立航迹冲突预调配理论模型,生成航空器无冲突4D航迹;步骤B、监视数据融合模块将空管雷达监视数据与自动相关监视数据进行融合,生成航空器实时航迹信息并提供给管制终端模块;管制终端模块中的飞行中短期4D航迹生成模块依据航空器实时航迹信息和历史航迹信息推测未来一定时间窗内的航空器4D轨迹;所述依据航空器实时航迹信息和历史航迹信息推测未来一定时间窗内的航空器4D轨迹的具体实施过程如下:步骤B6、对航空器轨迹数据预处理,依据所获取的航空器原始离散二维位置序列x=[x1,x2,…,xn]和y=[y1,y2,…,yn],采用一阶差分方法对其进行处理获取新的航空器离散位置序列Δx=[Δx1,Δx2,…,Δxn‑1]和Δy=[Δy1,Δy2,…,Δyn‑1],其中Δxb=xb+1‑xb,Δyb=yb+1‑yb(b=1,2,…,n‑1);步骤B7、对航空器轨迹数据聚类,对处理后新的航空器离散二维位置序列Δx和Δy,通过设定聚类个数M',采用遗传聚类算法分别对其进行聚类;步骤B8、对聚类后的航空器轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的航空器运行轨迹数据Δx和Δy视为隐马尔科夫过程的显观测值,通过设定隐状态数目N'和参数更新时段ζ',依据最近的T'个位置观测值并采用B‑W算法滚动获取最新隐马尔科夫模型参数λ';步骤B9、依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q;步骤B10、通过设定预测时域h',基于航空器当前时刻的隐状态q,获取未来时段航空器的位置预测值O;步骤B中,所述聚类个数M'的值为4,隐状态数目N'的值为3,参数更新时段ζ'为30秒,T'为10,预测时域h'为300秒。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏理工学院,未经江苏理工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610913767.2/,转载请声明来源钻瓜专利网。
- 上一篇:一种基于4D的航空器轨迹预测方法
- 下一篇:一种模拟乒乓球运动轨迹的演示装置