[发明专利]基于多任务学习的卷积神经网络的人脸属性分析方法有效
申请号: | 201610856231.1 | 申请日: | 2016-09-27 |
公开(公告)号: | CN106529402B | 公开(公告)日: | 2019-05-28 |
发明(设计)人: | 万军;李子青;雷震;谭资昌 | 申请(专利权)人: | 中国科学院自动化研究所 |
主分类号: | G06K9/00 | 分类号: | G06K9/00 |
代理公司: | 北京瀚仁知识产权代理事务所(普通合伙) 11482 | 代理人: | 宋宝库 |
地址: | 100080 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公布了一种基于多任务学习的卷积神经网络(CNN)的人脸属性分析方法。该方法主要是以卷积神经网络为基础,采用多任务学习的方法对人脸图像同时进行年龄估算、性别识别和种族分类。在传统的处理方法中,人脸多属性分析时,需要分多次计算,既消耗时间,又降低了模型的泛化能力。本发明通过对三个单任务网络分别进行训练,然后选用收敛最慢网络的权值初始化多任务网络的共享部分,随机初始化多任务网络的独立部分;接下来对多任务网络进行训练,得到多任务CNN网络模型;最后,就可以利用训练好的多任务CNN网络模型对输入的人脸图像同时进行年龄、性别和种族三个属性的分析,既节约了时间又获得了较高的准确度。 | ||
搜索关键词: | 基于 任务 学习 卷积 神经网络 属性 分析 方法 | ||
【主权项】:
1.一种基于多任务学习的卷积神经网络的人脸属性分析方法,其特征在于,包括单任务模型分析、多任务模型训练和人脸属性判断三部分;单任务模型分析:步骤A1,将各年龄人脸图像的原始样本进行人脸关键点检测,并进行人脸对齐后按照预设尺寸裁剪生成包含人脸图像的新样本;步骤A2,利用步骤A1生成的新样本,分别训练年龄估算网络、性别识别网络、种族分类网络三个单任务卷积神经网络,比较各网络的收敛速度,获取收敛速度最慢的一个单任务卷积神经网络的权值;多任务模型训练:步骤B1,构建多任务卷积神经网络,该网络共有三个任务输出,分别对应年龄估算、性别识别和种族分类,三个任务都采用softmax损失函数作为目标函数;所述多任务卷积神经网络包括用于多任务学习中数据共享和信息交换的共享部分、以及用于计算上述三个任务输出的独立部分;利用步骤A2获取的单任务卷积神经网络的权值初始化多任务卷积神经网络的共享部分,形成初始化后的多任务卷积神经网络;步骤B2,利用步骤A1中生成的新样本,训练多任务卷积神经网络,得到训练好的多任务卷积神经网络模型;人脸属性判断:步骤C1,对所输入图片进行人脸检测,判断是否包含人脸图像,如包含则对输入图像进行人脸关键点检测,并进行人脸对齐,然后按照预设尺寸裁剪生成包含人脸图像的新图片;步骤C2,将步骤C1所得新图片,输入到步骤B2得到的多任务卷积神经网络模型,进行年龄估算、性别识别和种族分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610856231.1/,转载请声明来源钻瓜专利网。
- 上一篇:终端模式的切换方法及装置
- 下一篇:一种基于人物属性的个性化服务系统及方法