[发明专利]基于聚类分析和实时校正的洪水预报方法有效
申请号: | 201610835246.X | 申请日: | 2016-09-20 |
公开(公告)号: | CN106650767B | 公开(公告)日: | 2020-10-27 |
发明(设计)人: | 李士进;孔俊;马凯凯;夏达;朱跃龙;张云飞;冯钧;余宇峰;王继民 | 申请(专利权)人: | 河海大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/08 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 柏尚春 |
地址: | 211100 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: |
本发明公开了基于聚类分析和实时校正的洪水预报方法,步骤为:一是利用主成分分析(PCA)对模型的输入做降维处理。二是利用K‑means聚类方法对原始数据进行聚类分析。将洪水数据划分为不同的类别,然后训练不同的SVM模型,当输入测试样本,利用聚类质心判断该测试样本所属的类别,并用对应的模型对其进行预测,得到预测值q;三是BP神经网络实时校正。计算预测值与真实值的误差序列,利用误差序列数据训练BP神经网络误差校正模型,得到误差校正值q |
||
搜索关键词: | 基于 聚类分析 实时 校正 洪水 预报 方法 | ||
【主权项】:
基于聚类分析和实时校正的洪水预报方法,其特征在于:步骤如下:第一步:采集实际河流的历史降雨量数据、历史流量数据以及对应的时间数据,并建立数据模型;第二步:对数据模型中的原始数据利用主成分分析进行降维处理,得到有效数据,将有效数据前2/3的数据作为训练样本,后1/3的数据作为测试样本;第三步:利用K‑means聚类方法对得到的训练样本进行聚类分析,将训练样本划分为k个不同类别等级;第四步:利用聚类后得到的k个类别的训练样本训练不同的SVM模型,利用交叉验证方法搜寻这k个类别的训练样本所对应的支持向量机模型中的惩罚因子c和核函数参数g,使每个支持向量机模型都达到最优,然后输入测试样本并对该测试样本进行判断其所属的类别,并用对应的SVM模型对测试样本进行预测,得到模型预测值q;第五步:计算测试样本中预测值与真实值的误差序列,利用该误差序列前2/3的数据训练BP神经网络误差校正模型,后1/3的数据测试误差矫正值,得到误差校正值qe,最终预报结果为模型预测值q加上误差校正值qe。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学,未经河海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610835246.X/,转载请声明来源钻瓜专利网。