[发明专利]一种基于深度学习的磁共振影像特征提取及分类方法在审

专利信息
申请号: 201610409373.3 申请日: 2016-06-08
公开(公告)号: CN106096616A 公开(公告)日: 2016-11-09
发明(设计)人: 龚启勇;张俊然;黄晓琦;吕粟;贾志云 申请(专利权)人: 四川大学华西医院
主分类号: G06K9/46 分类号: G06K9/46;G06K9/62
代理公司: 成都泰合道知识产权代理有限公司 51231 代理人: 向晟
地址: 610047 四*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于深度学习的磁共振影像特征提取及分类方法,包括:S1纳入磁共振图像并对其进行预处理操作和特征映射操作;S2构建包括输入层、多个卷积层、至少一个池化层/下采样层以及全连接层的多层卷积神经网络,其中,卷积层和池化层/下采样层依次交替设于输入层和全连接层之间,且卷积层的数量比池化层/下采样层的数量多1;S3使用步骤S2构建的多层卷积神经网络对磁共振图像进行特征提取;S4将步骤S3输出的特征向量输入Softmax分类器中,对磁共振图像的疾病属性做出判断。其通过多层卷积神经网络的非线性映射,自动得到高度可分的特征/特征组合用于分类,并且可以不断优化网络结构得到更好的分类效果。
搜索关键词: 一种 基于 深度 学习 磁共振 影像 特征 提取 分类 方法
【主权项】:
一种基于深度学习的磁共振影像特征提取及分类方法,其特征在于,所述磁共振影像特征提取及分类方法包括:S1纳入磁共振图像并对其进行预处理操作和特征映射操作;S2构建一个包括输入层、多个卷积层、至少一个池化层/下采样层以及全连接层的多层卷积神经网络,其中,所述卷积层和所述池化层/下采样层依次交替设于所述输入层和所述全连接层之间,且所述卷积层的数量比所述池化层/下采样层的数量多1;S3使用步骤S2构建的所述多层卷积神经网络对步骤S1中经预处理和特征映射后的磁共振图像进行特征提取;S4将步骤S3中所述多层卷积神经网络输出的特征向量输入Softmax分类器中,对纳入到的磁共振图像的疾病属性做出判断。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川大学华西医院,未经四川大学华西医院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610409373.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top