[发明专利]联合显著性检测与判别式学习的目标前景协同分割方法有效

专利信息
申请号: 201310316589.1 申请日: 2013-07-25
公开(公告)号: CN103390279A 公开(公告)日: 2013-11-13
发明(设计)人: 卢汉清;刘静;李勇 申请(专利权)人: 中国科学院自动化研究所
主分类号: G06T7/00 分类号: G06T7/00
代理公司: 中科专利商标代理有限责任公司 11021 代理人: 宋焰琴
地址: 100190 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种联合显著性检测与判别式学习的目标前景协同分割方法,包括:步骤1,将图像集中的每幅图像过分割成多个超像素块,并对每个超像素块提取特征;步骤2,将图像集中共有的显著性区域提取出来作为目标前景,而将非显著性区域和具有显著性但不是该图像集中共有的区域作为背景区域,其中采用低秩矩阵分解进行图像的显著性检测,采用逻辑回归来选择共有的显著性区域作为最终的目标。本发明通过低秩矩阵分解可以有效地检测显著性区域,去除背景一致性的影响,而判别式学习可以提取出共有显著性区域。低秩矩阵分解与判别式学习过程在统一的框架下联合优化,两者相互影响,共同提升。最终可以获得共有显著性区域作为目标前景区域。
搜索关键词: 联合 显著 检测 判别式 学习 目标 前景 协同 分割 方法
【主权项】:
一种联合显著性检测与判别式学习的目标前景协同分割方法,该方法包括以下各步骤:步骤1,将图像集中的每幅图像过分割成多个超像素块,并对每个超像素块提取特征;步骤2,将图像集中共有的显著性区域提取出来作为目标前景,而将非显著性区域和具有显著性但不是该图像集中共有的区域作为背景区域,其中采用低秩矩阵分解进行图像的显著性检测,采用逻辑回归来选择共有的显著性区域作为最终的目标。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310316589.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top