[发明专利]图像金字塔特征指导的多尺度目标检测方法在审

专利信息
申请号: 202210185676.7 申请日: 2022-02-28
公开(公告)号: CN114612709A 公开(公告)日: 2022-06-10
发明(设计)人: 陈苏婷;马文妍;张艳艳;张闯 申请(专利权)人: 南京信息工程大学
主分类号: G06V10/764 分类号: G06V10/764;G06V10/82;G06V10/77;G06V10/80;G06V10/40;G06K9/62;G06N3/04;G06N3/08
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 王慧
地址: 224002 江苏省盐城*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 图像 金字塔 特征 指导 尺度 目标 检测 方法
【说明书】:

发明公开了一种图像金字塔特征指导的多尺度目标检测方法,包括步骤:S1,以彩色图像作为网络输入,以FPN作为目标检测的框架,采用排序下采样方法提取图像特征;S2,以同一幅彩色图像作为输入,采用构建的双瓶颈子卷积网络提取图像金字塔中每层级的位置信息和细节特征;S3,将步骤S2中提取的每层级的图像特征和主干网络对应的深层特征输入到构建的分层式特征融合模块中,完成高分辨率、弱语义特征与低分辨率、强语义特征的融合;S4,引入Focal loss重构损失函数,完成目标检测。本发明不仅能加强空间位置信息,而且能避免在下采样中丢失大量细节信息,从而增加了目标检测网络对小目标和邻近目标的辨识度。

技术领域

本发明涉及多尺度目标检测方法,尤其涉及一种图像金字塔特征指导的多尺度目标检测方法。

背景技术

目标检测任务是为自然图像中每个目标精准预测一个类别和坐标位置。广泛应用在很多领域,从无人驾驶、智能社区到视频监控,具有极大的研究价值。但是,不同类别的物体可能具有相似的外观和尺寸,相同类别的物体的外观和尺寸也可能会有很大的差别。背景复杂多样,物体间又存在相互遮挡的现象,这些因素导致目标检测成为计算机视觉领域中最具挑战性的任务之一。传统的目标检测方法是通过人工设计特征提取算子获取图像的特征,这些特征的表征能力低、泛化性差,这限制了传统目标检测方法的进一步发展。

近年来,深度学习的出现极大地促进了计算机视觉的发展。基于卷积神经网络(CNNs)的目标检测算法通过卷积运算从图像中提取目标特征,这使网络能够获得更加有利、更加深层次的特征,能够较好地处理复杂情况,例如遮挡、形变和光照变化。目前以卷积神经网络为基础的目标检测算法可分为两大类:一类是基于区域候选框的两步目标检测算法和基于回归的一步目标检测算法。

但是,目标检测算法仍存在许多不足,尤其是在多尺度目标检测中。现有的方法不能够很好的检测出不同尺度的相同目标,尤其是小目标和邻近目标,其语义信息会随着网络的加深而消失。

发明内容

发明目的:本发明的目的是提供一种能提高对小目标和邻近目标的辨识度的图像金字塔特征指导的多尺度目标检测方法,用于解决多尺度目标检测中高层特征图容易混淆邻近目标特征、忽略小目标的问题。

技术方案:本发明的多尺度目标检测方法,包括步骤如下:

S1,以彩色图像作为网络输入,以基于ResNet-101主干网络的FPN作为目标检测的框架,采用排序下采样方法提取图像特征;

S2,以步骤S1中的同一幅彩色图像作为输入,采用构建的双瓶颈子卷积网络提取图像金字塔中每层级的位置信息和细节特征;

S3,将步骤S2中提取的每层级的图像特征和主干网络对应的深层特征输入到构建的分层式特征融合模块中,完成高分辨率、弱语义特征与低分辨率、强语义特征的融合;

S4,引入Focal loss重构损失函数,对多任务进行训练,完成目标检测。

所述步骤S1中,所述排序下采样方法的实现过程如下:

S11,在卷积神经网络的特征采样层的特征图上,滑动一个设定步长的滑窗,将滑窗内数值按升序排序,依次提取该滑窗内的四个值,生成四个新特征图;每个新特征图的宽度和高度都是原特征图的一半,则有排序下采样方法的输出为:

其中,表示卷积神经网络每个采样层的特征图,W、H和D分别表示特征图的宽度、高度与通道数,l是卷积神经网络采样层的层级索引;Mj(·)表示提取滑窗内第j个值的过程,每个滑窗内被依次提取四个值;表示第l个下采样层中第j个输出的新特征图,每个下采样层生成四个新特征图;

S12,将四个新特征图并置,然后输入到小型卷积网络进行特征精修和通道调整;将输出的最终特征图作为主干网络下一层的输入,其中,W′、H′和D′分别表示最终特征图的宽度、高度与通道数。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210185676.7/2.html,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top