[发明专利]一种基于多帧点云的运动目标检测系统和方法有效
| 申请号: | 202111456208.0 | 申请日: | 2021-12-02 |
| 公开(公告)号: | CN113870318B | 公开(公告)日: | 2022-03-25 |
| 发明(设计)人: | 华炜;马也驰;冯权;张顺 | 申请(专利权)人: | 之江实验室 |
| 主分类号: | G06T7/246 | 分类号: | G06T7/246;G06N3/04;G06N3/08 |
| 代理公司: | 杭州浙科专利事务所(普通合伙) 33213 | 代理人: | 孙孟辉;杨小凡 |
| 地址: | 310023 浙江省杭州市*** | 国省代码: | 浙江;33 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 多帧点云 运动 目标 检测 系统 方法 | ||
1.一种基于多帧点云的运动目标检测系统,包括体素特征提取模块、转换模块和识别模块,其特征在于所述转换模块包括跨模态注意力模块;
所述体素特征提取模块,将连续帧点云序列进行体素化,并提取特征张量序列;
所述转换模块,获取特征张量序列,通过跨模态注意力模块,将第一特征张量与第二特征张量进行融合,融合的结果再与第三特征张量融合,再将融合后的结果与第四特征张量融合,在以此类推,得到最终融合后的特征张量;跨模态注意力模块,将两个特征张量,根据注意力机制进行匹配融合,并通过卷积神经网络融合后,得到融合后的特征张量;
所述识别模块,对最终融合后的特征张量进行特征提取,输出目标的检测信息;
跨模态注意力模块的匹配融合如下:
其中,Q_a=X_a*W_Q和Q_b=X_b*W_Q分别表示注意力机制中的Query,K_a=X_a*W_K和K_b=X_b*W_K分别表示注意力机制中Key,V_a=X_a*W_V和V_b=X_b*W_V分别表示注意力机制中Value,X_a和X_b表示待融合的两个特征张量,W_Q、W_K以及W_V分别表示可训练权重矩阵,d分别表示Q_a与K_b的维度和Q_b与K_a的维度,Trans()为矩阵转置操作,softmax_col()表示矩阵按列进行归一化操作;
再将Y(X_a, X_b)和Y(X_b, X_a)通过卷积神经网络进行融合,得到融合后的特征张量:
Crossmodal Attention(X_a,X_b)=Conv(Y(X_a, X_b),Y(X_b, X_a))
其中,Conv()表示卷积神经网络。
2.根据权利要求1所述的一种基于多帧点云的运动目标检测系统,其特征在于所述体素特征提取模块,根据每帧对应的位姿,将连续帧点云序列转换到大地坐标系,并对转换后的连续帧点云序列进行体素化,大地坐标系是相对于大地的固定预设坐标原点的笛卡尔正交坐标系,以第一帧点云数据向前方向为大地坐标系的X轴正方向,向右方向为大地坐标系的Y轴正方向,向上方向为大地坐标系的Z轴正方向。
3.根据权利要求1所述的一种基于多帧点云的运动目标检测系统,其特征在于所述体素化,通过构建体素大小及体素化范围,将每个体素内点的均值作为体素化特征。
4.根据权利要求1所述的一种基于多帧点云的运动目标检测系统,其特征在于所述提取特征张量,是对体素化得到的特征,通过稀疏卷积模块进行特征提取,得到特征张量,稀疏卷积模块包括一组子卷积模块,子卷积模块包括子流行卷积层、归一化层和Relu层。
5.根据权利要求1所述的一种基于多帧点云的运动目标检测系统,其特征在于所述转换模块,将形状大小为C*D*W*H的特征张量重塑成大小为C*(D*W*H)的特征张量,C表示特征通道数,D表示高度,W表示宽度,H表示长度,再对重塑后的特征张量序列进行匹配融合。
6.根据权利要求1所述的一种基于多帧点云的运动目标检测系统,其特征在于所述特征张量序列为{F_Base_seq[i],0i=N},i表示帧索引,N表示帧数,对序列中的特征张量进行匹配融合,得到融合后的特征张量F_Base_fusion_seq[j,j+1],j表示帧索引,0j=N,当j=1时,对特征张量F_Base_seq[j]和特征张量F_Base_seq[j+1]进行融合,当1jN时,对融合后的特征张量F_Base_fusion_seq[j-1,j]和特征张量F_Base_seq[j+1]进行循环融合,输出最终融合后的特征张量F_Base_fusion_seq[N-1,N]。
7.根据权利要求5所述的一种基于多帧点云的运动目标检测系统,其特征在于所述识别模块,将最终融合后的特征张量重塑成形状大小为(C*D)*W*H的特征张量,再对重塑后的特征张量进行特征提取,输出目标的检测信息。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于之江实验室,未经之江实验室许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202111456208.0/1.html,转载请声明来源钻瓜专利网。





