[发明专利]一种航空发动机传感器故障检测方法及装置有效
| 申请号: | 202110881387.6 | 申请日: | 2021-08-02 |
| 公开(公告)号: | CN113607205B | 公开(公告)日: | 2023-09-19 |
| 发明(设计)人: | 王雷;裴紫焱;鲁统超;马乐乐;孙震宇 | 申请(专利权)人: | 中国民航大学 |
| 主分类号: | G01D18/00 | 分类号: | G01D18/00;G06F18/214;G06N3/0442;G06N3/0464 |
| 代理公司: | 天津才智专利商标代理有限公司 12108 | 代理人: | 庞学欣 |
| 地址: | 300300 天*** | 国省代码: | 天津;12 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 航空发动机 传感器 故障 检测 方法 装置 | ||
1.一种航空发动机传感器故障检测方法,其特征在于:所述的航空发动机传感器故障检测方法包括按顺序进行的下列步骤:
1)按时间顺序预先采集飞行过程中的8种快速访问记录器数据,分别为油门杆角度PLA、高压转子转速N1、放气活门开度VBV、压气机可调静叶角度CVV、大气总温TAT、燃油流量FF、飞机高度ALT和飞行马赫数MACH,其中前6种数据为6种不同位置传感器的检测数据,然后分别对每个传感器的检测数据进行滑动去极值平均滤波处理,获得去极值平均滤波后的数据;由所有去极值平均滤波后的数据组成数据集;
2)使用上述飞机高度ALT和飞行马赫MACH作为聚类依据数据,将上述数据集中的数据输入高斯混合模型GMM中,根据将飞行过程划分的飞行阶段数量设置聚类数,对高斯混合模型GMM进行训练,不断调整模型参数,最终获得训练好的高斯混合模型GMM,由此将飞行过程中6种传感器的去极值平均滤波后的数据划分为多组不同飞行阶段的数据;
3)将每组不同飞行阶段的数据分别添加传感器卡死故障、恒增益故障和恒偏差故障,获得多组不同飞行阶段的传感器故障数据,然后对每种传感器故障数据赋予标签,之后将带有标签的每组不同飞行阶段的传感器故障数据按8∶2的比例随机分成训练集和测试集;然后将每个飞行阶段的训练集先进行Z-Score标准化处理,再分别输入至一个CNN-LSTM混合模型中进行训练,获得多个训练后的CNN-LSTM混合模型;
4)将每个飞行阶段的测试集先进行Z-Score标准化处理,然后分别输入至相应飞行阶段的训练后的CNN-LSTM混合模型中进行识别,用识别结果与相应训练集中带有标签的传感器故障数据的误差对训练后的CNN-LSTM混合模型进行梯度下降训练,直至识别准确率达到设定值时,结束训练,获得训练好的CNN-LSTM混合模型;
5)系统平台接收到航空发动机的快速访问记录器数据集后,将其中油门杆角度PLA、高压转子转速N1、放气活门开度VBV、压气机可调静叶角度CVV、大气总温TAT、燃油流量FF共6种传感器的检测数据先按照步骤1)和步骤2)的方法进行滑动去极值平均滤波处理及聚类,然后利用上述训练好的CNN-LSTM混合模型对聚类后的数据进行特征提取与故障识别,以确定传感器是否存在故障;
6)若识别结果中存在故障信息,则在系统平台上显示识别结果和故障信息,以提醒飞机驾驶员或机务维修人员注意。
2.根据权利要求1所述的航空发动机传感器故障检测方法,其特征在于:在步骤1)中,所述滑动去极值平均滤波处理的具体方法是:
取某一时间点某个传感器的检测数据、该检测数据的前15个检测数据和后14个检测数据共30个检测数据,从中去掉最大值和最小值,然后计算余下28个检测数据的平均值,获得该时间点该传感器的去极值平均滤波后的数据,往后依次滑动运算进行其后时间点的去极值平均滤波。
3.根据权利要求1所述的航空发动机传感器故障检测方法,其特征在于:在步骤2)中,所述飞行过程划分为12个飞行阶段,分别为起飞、阶梯爬升、巡航、下降、近进、着陆以及上述各个飞行阶段的过渡阶段;聚类数为12,共获得12组不同飞行阶段的数据。
4.根据权利要求1所述的航空发动机传感器故障检测方法,其特征在于:在步骤3)中,所述CNN-LSTM混合模型和训练后的CNN-LSTM混合模型的数量均为12个;
所述的CNN-LSTM混合模型是由CNN模型和LSTM模型串接而成,包括4个CNN层、2个LSTM层和3个全连接层;每个CNN层的运算过程共分为四步:二维卷积运算、批标准化运算、激活和最大池化运算;
每个LSTM层由遗忘门、输入门和输出门组成;遗忘门用来决定丢弃前期记忆信息的程度,输入门用来决定向细胞记忆中存储信息的程度,输出门决定输出细胞中的哪些信息。
5.根据权利要求1所述的航空发动机传感器故障检测方法,其特征在于:在步骤4)中,所述识别准确率设定为大于95%。
6.根据权利要求1所述的航空发动机传感器故障检测方法,其特征在于:在步骤6)中,所述识别结果和故障信息包含所属的飞行阶段、故障传感器类型和故障类型。
7.一种航空发动机传感器故障检测装置,其特征在于:所述航空发动机传感器故障检测装置包括:
数据预处理模块,用于对系统平台接收到航空发动机的快速访问记录器数据集和预先采集的快速访问记录器数据中传感器的检测数据进行滑动去极值平均滤波处理,以消除噪声的影响,同时抑制偶然脉冲干扰;
识别模块,用于在系统平台接收到航空发动机的快速访问记录器数据集后,将其中的传感器的检测数据输入训练好的高斯混合模型GMM中,以判断该检测数据所属的飞行阶段,然后送入对应飞行阶段的训练好的CNN-SLTM混合模型中进行特征提取与故障识别,并将识别结果送入显示模块;
显示模块,用于以窗口的形式显示识别结果和故障信息,所述识别结果和故障信息包含所属的飞行阶段、故障传感器类型和故障类型;
训练模块,用于对预先采集的快速访问记录器数据中每一组数据进行特征提取,训练12个飞行阶段的12个CNN-LSTM混合模型,以获得模型参数供识别模块使用;
验证模块,用于对预先采集的QAR数据集中测试集的数据进行特征提取与故障检测,并将检测结果与预先标识的标签进行对比并计算识别准确率,以验证训练后的CNN-LSTM混合模型的准确率。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国民航大学,未经中国民航大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110881387.6/1.html,转载请声明来源钻瓜专利网。





