[发明专利]基于大数据的人工智能模型机器学习方法及服务器在审

专利信息
申请号: 202110833252.2 申请日: 2021-01-20
公开(公告)号: CN113569937A 公开(公告)日: 2021-10-29
发明(设计)人: 廖彩红 申请(专利权)人: 廖彩红
主分类号: G06K9/62 分类号: G06K9/62;G06N3/08;G06N20/00
代理公司: 暂无信息 代理人: 暂无信息
地址: 650100 云南省昆明市西山区环*** 国省代码: 云南;53
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 数据 人工智能 模型 机器 学习方法 服务器
【权利要求书】:

1.一种基于大数据的人工智能模型机器学习方法,其特征在于,包括:

获取业务数据采集范围中的多个时域节点业务数据和多个空域节点业务数据;

获取所述多个时域节点业务数据之间的时域关联参数和时域特征差异,获取所述多个空域节点业务数据之间的空域关联参数和空域特征差异;

根据所述时域关联参数和所述时域特征差异,对所述多个时域节点业务数据进行组合,得到所述业务数据采集范围中的时域数据拓扑分布;其中,一个时域数据拓扑分布包括至少一个时域节点业务数据;

根据所述空域关联参数和所述空域特征差异,对所述多个空域节点业务数据进行组合,得到所述业务数据采集范围中的空域数据拓扑分布;其中,一个空域数据拓扑分布包括至少一个空域节点业务数据;

基于所述时域数据拓扑分布以及所述空域数据拓扑分布进行拓扑融合以到业务数据流样本集合;

将所述业务数据流样本集合输入预设目标业务特征网络进行机器学习,得到已学习目标业务特征网络;

通过所述已学习目标业务特征网络对所述业务数据流样本集合进行目标业务特征检测,得到所述业务数据流样本集合的初始目标业务特征集合;

将所述初始目标业务特征集合输入预设的第一防干扰特征检测网络进行机器学习,得到第一目标防干扰特征检测网络;

基于联合模型训练策略以及所述第一目标防干扰特征检测网络对预设的第二防干扰特征检测网络进行机器学习,得到第二目标防干扰特征检测网络,使得训练得到的第二目标防干扰特征检测网络的参数量小于第一目标防干扰特征检测网络的参数量。

2.根据权利要求1所述的方法,其特征在于,所述基于所述时域数据拓扑分布以及所述空域数据拓扑分布进行拓扑融合以到业务数据流样本集合,包括:

根据所述时域数据拓扑分布和空域数据拓扑分布之间的业务拓扑关系,对所述业务数据采集范围中产生的各时域数据拓扑分布和各空域数据拓扑分布进行拓扑融合,得到多个拓扑分布融合组;每个拓扑分布融合组中的空域数据拓扑分布分别包括所述业务数据采集范围中的第二空域节点业务数据;

将因未匹配到时域数据拓扑分布而未进行拓扑融合的空域数据拓扑分布确定为待处理空域数据拓扑分布,根据所述待处理空域数据拓扑分布包含的第一空域节点业务数据,获取所述待处理空域数据拓扑分布的第一拓扑分布描述信息;所述第一空域节点业务数据包含于所述业务数据采集范围;

根据所述每个拓扑分布融合组包括的第二空域节点业务数据,分别获取所述每个拓扑分布融合组中的空域数据拓扑分布的第二拓扑分布描述信息;

获取所述第一拓扑分布描述信息分别与所述每个拓扑分布融合组对应的第二拓扑分布描述信息之间的特征差异;

根据所述每个拓扑分布融合组对应的特征差异,确定所述每个拓扑分布融合组中的空域数据拓扑分布分别与所述待处理空域数据拓扑分布之间的拓扑关联参数;

统计拓扑关联参数不小于预设关联参数阈值的目标拓扑分布融合组,将所述目标拓扑分布融合组中的时域数据拓扑分布所包含的业务特征信息,确定为与所述待处理空域数据拓扑分布关联的业务特征信息;

将与所述待处理空域数据拓扑分布关联的业务特征信息和所述待处理空域数据拓扑分布进行拓扑融合,得到特征拓扑融合组;

根据所述特征拓扑融合组和所述多个拓扑分布融合组,确定所述业务数据采集范围中的业务数据流和所述业务数据流对应的业务特征信息,并根据所述业务数据流和对应的业务特征信息得到所述业务数据流样本集合。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于廖彩红,未经廖彩红许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110833252.2/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top