[发明专利]一种图像分析方法、装置、设备和介质有效

专利信息
申请号: 202110687507.9 申请日: 2021-06-21
公开(公告)号: CN113409273B 公开(公告)日: 2023-04-07
发明(设计)人: 向秋静;杨雄 申请(专利权)人: 上海联影医疗科技股份有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06V10/25;G06V10/774;G06T7/11
代理公司: 北京品源专利代理有限公司 11332 代理人: 孟金喆
地址: 201807 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 图像 分析 方法 装置 设备 介质
【说明书】:

发明实施例公开了一种图像分析方法、装置、设备和介质,其中,方法包括:将感兴趣区域图像数据输入至当前最优第一图像分割模型,得到第一分割图像,当前最优第一图像分割模型是对预设第一图像分割模型进行优化得到的模型;当第一分割图像满足第一预设分割标准时,将第一分割图像输入至当前最优第二图像分割模型,得到第二分割图像,当前最优第二图像分割模型是根据历次第一分割图像分析过程中获取的图像样本,对预设第二图像分割模型进行优化得到的模型;当第二分割图像满足第二预设分割标准时,将第二分割图像作为目标图像分析结果进行输出。本发明实施例的技术方案实现了自动优化血管图像分析模型,提高血管的管腔管壁分割的准确性。

技术领域

本发明实施例涉及医学图像处理技术领域,尤其涉及一种图像分析方法、装置、设备和介质。

背景技术

脑血管病是目前我国致死率较高的疾病,而血管中易损斑块与缺血性卒中的发生有正相关性,而对动脉粥样硬化的形态结构和斑块成分的准确评估对于确认是否是易损斑块至关重要,可通过磁共振图像进行血管及病变的分析,辅助医生对脑血管疾病的分析,对医学研究具有重要的意义。

目前,相关的研究大部分集中于颈动脉的管腔管壁分割,但是对于颅内血管,动脉粥样硬化同样会发生,因此对颅内血管进行管腔管壁分割和斑块分析同样重要。而且,现有的利用深度学习方法进行血管的管腔管壁分析的模型的分析效果会在很大程度上依赖于训练集的样本数量和样本多样性。但通常正常人数据较多,病例数据较少,而且同一病种有着不同的影像表现,样本的多样性较难保证,导致模型的开发周期长,且模型不具备自更新能力。

发明内容

本发明实施例提供一种图像分析方法、装置、设备和介质,以实现血管图像分析模型的自动优化,提高血管的管腔管壁分割的准确性。

第一方面,本发明实施例提供了一种图像分析取方法,该方法包括:

获取待分析图像序列,并选取所述待分析图像序列中的感兴趣区域;

将所述感兴趣区域图像数据输入至当前最优第一图像分割模型,得到第一分割图像,其中,所述当前最优第一图像分割模型是根据历次感兴趣区域图像数据分析过程中获取的图像样本,对预设第一图像分割模型进行优化得到的模型;

当所述第一分割图像满足第一预设分割标准时,将所述第一分割图像输入至当前最优第二图像分割模型,得到第二分割图像,其中,所述当前最优第二图像分割模型是根据历次第一分割图像分析过程中获取的图像样本,对预设第二图像分割模型进行优化得到的模型;

当所述第二分割图像满足第二预设分割标准时,将所述第二分割图像作为目标图像分析结果进行输出。

可选的,所述当前最优第一图像模型通过对预设第一图像分割模型进行优化得到,包括:

响应并记录用户对通过所述预设第一图像分割模型获得的第一图像分割结果,进行第一修正操作;

统计所述第一修正操作的操作数据,并根据所述第一修正操作的操作数据、输入至所述预设第一图像分割模型中的感兴趣区域图像以及对应的修正后的图像分割结果,配置第一图像样本;

通过所述第一图像样本对所述预设第一图像分割模型进行训练,得到当前最优第一图像分割模型。

可选的,所述统计所述第一修正操作的操作数据,并根据所述第一修正操作的操作数据、输入至所述预设第一图像分割模型中的感兴趣区域图像以及对应的修正后的图像分割结果,配置第一图像样本,包括:

统计所述第一修正操作中,进行修正操作的感兴趣区域图像的数量,以及针对每个感兴趣区域图像进行修正操作的时长;

根据所述第一修正操作的操作数据中针对每个感兴趣区域图像的进行修正操作的时长,配置输入至所述预设第一图像分割模型中的感兴趣区域图像以及对应的修正后的图像分割结果的权重值,得到第一图像样本。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海联影医疗科技股份有限公司,未经上海联影医疗科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110687507.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top