[发明专利]一种基于NB-Bagging的短文本分类方法有效

专利信息
申请号: 202110079516.X 申请日: 2021-01-21
公开(公告)号: CN112749756B 公开(公告)日: 2023-10-13
发明(设计)人: 刘虎;丁明月;赵世栋;宋东林;顾刚;王梦华 申请(专利权)人: 淮阴工学院
主分类号: G06F16/35 分类号: G06F16/35;G06F40/216;G06F40/289;G06F18/214;G06F18/2415
代理公司: 淮安市科文知识产权事务所 32223 代理人: 李锋
地址: 223005 江苏省*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 nb bagging 文本 分类 方法
【权利要求书】:

1.一种基于NB-Bagging的短文本分类方法,其特征在于,包括如下步骤:

步骤1:对文本数据集预处理,将数据分为训练集G1和测试集H1,通过结巴分词方法对所述训练集G1和测试集H1进行分词处理,得到文本数据集G2和H2,对所述文本数据集G2和H2进行 Bunch类数据化处理,得到Bunch数据类型G2'和H2';

步骤2:通过词向量空间模型处理G2'中的文本内容,建立词向量空间V1,再映射到H2'中的文本内容,得到词向量空间V2;

步骤3:通过TF-IDF权重策略处理词向量空间V1和V2,得到权重矩阵T1和T2,将T1矩阵中的权重值和其对应的标签输入用Bagging集成的朴素贝叶斯模型中训练,再输入T2矩阵中的权重值和其对应的标签进行测试,得到预测标签F;

步骤4:通过少数服从多数的投票方式处理预测标签F,得到最终短文本分类的结果。

2.根据权利要求1所述的基于NB-Bagging的短文本分类方法,其特征在于,所述步骤1的具体方法为:

步骤1.1:定义Text为单类文本集,定义label、text、name分别为标签、单个文本和名称,并且满足Text={(label,text1, name1),(label,text2, name2),…,(label,textN,nameN)},texta为Text中第a个文本,namea为Text中第a个文本名称,其中,变量a∈[1,N];

步骤1.2:定义训练集和测试集分别为G1和H1,G1={Text1,Text2,…,TextA},H1={Text1,Text2,…,TextB};

步骤1.3:使用结巴分词方法对G1和H1处理,去掉结巴分词库里的常用词和符号,得到分词后的文本数据集G2和H2,G2={Text1,Text2,…,TextP},H2={Text1,Text2,…,TextQ};

步骤1.4: 定义target_name,labels,filenames,contents分别为数据集类别集合、文本标签集合、文本文件名字集合和文本内容集合,满足target_name={labels,filenames,contents};

步骤1.5:对G2和H2 Bunch类数据化处理,得到Bunch数据类型G2'和H2',G2'={target_name1,target_name2,…,target_nameA},H2'={target_name1,target_name2,…,target_nameB}。

3.根据权利要求1所述的基于NB-Bagging的短文本分类方法,其特征在于,所述步骤2的具体方法为:

步骤2.1:使用常用停用词表对G2'和H2'中的文本内容进行停用词过滤处理,得到过滤后的Bunch类数据集G2''和H2'';

步骤2.2:通过词向量空间模型建立G2''中文本内容的词向量空间V1,使用权重策略TF-IDF对V1进行处理,得到训练集的二维权重矩阵T1,T1=[v1,v2,…,vm];

步骤2.3:将V1词向量空间映射到H2''文本内容上,得到测试集词向量空间V2,使用TF-IDF权重策略处理V2,得到测试集的二维权重矩阵T2,T2=[v1,v2,…,vn]。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于淮阴工学院,未经淮阴工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110079516.X/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top