[发明专利]基于跨域对偶生成式对抗网络的偏见消除方法与装置在审

专利信息
申请号: 202010759081.9 申请日: 2020-07-31
公开(公告)号: CN111862260A 公开(公告)日: 2020-10-30
发明(设计)人: 陈晋音;徐思雨;缪盛欢;徐国宁;陈治清 申请(专利权)人: 浙江工业大学
主分类号: G06T11/00 分类号: G06T11/00;G06T9/00;G06T3/00;G06N3/04;G06K9/62
代理公司: 杭州天勤知识产权代理有限公司 33224 代理人: 曹兆霞
地址: 310014 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 对偶 生成 对抗 网络 偏见 消除 方法 装置
【权利要求书】:

1.一种基于跨域对偶生成式对抗网络的偏见消除方法,其特征在于,包括以下步骤:

(1)采集图像数据,并标记图像数据的任务标签和受保护属性,将任务标签、受保护属性与图像数据构成一个样本图像,组成样本集,根据任务标签不同将样本集分成U域样本集和V域样本集,U域样本集中样本图像u和V域样本集中的样本图像v组成一个样本对;

(2)基于跨域对偶生成式对抗网络构建训练系统,包括生成器GA、判别器DA、生成器GB、判别器DB,样本对中样本图像u和样本图像v分别输入至生成器GA、生成器GB中,并为生成器GA和生成器GB分别添加噪声信息z和噪声信息z’,样本图像u与噪声信息z经过生成器GA编码的生成图像GA(u,z)再与噪声信息z’经过生成器GB编码得到生成图像GB(GA(u,z),z'),样本图像v与噪声信息z’经过生成器GB编码的生成图像GB(v,z')再与噪声信息z经过生成器GA编码得到生成图像GA(GB(u,z'),z),判别器DA判别生成图像GA(u,z)与样本图像v的真伪,判别器DB判别生成图像GB(v,z')与样本图像u的真伪;

(3)构建损失函数,根据生成图像GA(u,z)与样本图像v之间的距离构建判别器DA的第一损失函数;根据生成图像GB(v,z’)与样本图像u之间的距离构建判别器DB的第二损失函数,根据所有生成图像和样本图像之间的距离构建第一部分损失,根据任务标签和判别标签的交叉熵、受保护属性与编码特征的交叉熵构建第二部分损失,第一部分损失和第二部分损失组成生成器GA和生成器GB的第三损失函数;

(4)利用第一损失函数、第二损失函数以及第三损失函数对训练系统进行对抗训练,训练结束后,提取参数确定的生成器GA和GB作为两个图像迁移模型;

(5)应用时,将图像对分别输入至两个图像迁移模型,经计算生成图像域迁移的两张迁移图像。

2.如权利要求1所述的基于跨域对偶生成式对抗网络的偏见消除方法,其特征在于,所述第一损失函数为:

第二损失函数为:

其中,DA(v)为样本图像v输入至判别器DA得到的预测判别结果,DA(GA(u,z))为生成图像GA(u,z)输入至判别器DA得到的预测判别结果,DB(u)为样本图像u输入至判别器DB得到的预测判别结果,DB(GB(v,z'))为生成图像GB(v,z')输入至判别器DB得到的预测判别结果。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010759081.9/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top