[发明专利]基于长短时记忆神经网络的短期电力负荷预测方法有效

专利信息
申请号: 202010705130.0 申请日: 2020-07-21
公开(公告)号: CN111815065B 公开(公告)日: 2023-08-29
发明(设计)人: 常玉清;方翟宇;徐海燕;郭帅;王姝 申请(专利权)人: 东北大学
主分类号: H02J3/00 分类号: H02J3/00;G06Q50/06;G06N3/0442;G06F18/214;G06Q10/04
代理公司: 沈阳东大知识产权代理有限公司 21109 代理人: 李在川
地址: 110819 辽宁*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 短时记忆 神经网络 短期 电力 负荷 预测 方法
【说明书】:

发明提供一种基于长短时记忆神经网络的短期电力负荷预测方法,包括1)采集电力负荷历史数据和气象历史数据,构建历史数据集;2)采用集成经验模态分解法,对电力负荷历史序列进行分解;3)计算每个分量的样本熵值并进行分组;4)构建每个分组的最优预测模型;5)确定预测模型的输入;6)累加各个最优预测模型的预测值得到最终的电力负荷预测值。本发明结合集成经验模态分解和长短时记忆神经网络模型对短期电力负荷进行预测,可以实现准确、实时、可靠的预测效果,具有很好的适用性和有效性,可以被广泛地应用在短期电力负荷预测中。

技术领域

本发明涉及电力预测技术领域,具体涉及一种基于长短时记忆神经网络的短期电力负荷预测方法。

背景技术

电力系统的任务是为用户提供安全、可靠、稳定的电能,以满足各类负荷的需求。在电力系统中,发电、输电、配电和用电是同步进行的,且要求系统的发电量与负荷保持动态平衡。如果高估未来的电力负荷,则会启动额外的发电机组,增加储备和运营成本;此外,如果低估未来的电力负荷,则会导致系统无法为用户提供所需的电力,电力系统可能会面临崩溃的风险。因此提高电力负荷预测的准确性是十分必要的。

目前电力负荷预测模型主要分为三类:传统的统计学模型、人工智能模型、以及混合模型。传统模型主要包括回归分析法、时间序列法以及卡尔曼滤波法等。这些方法虽然具有简单、速度快的优点,但是没有考虑到负荷数据的非线性特点。人工智能模型主要包括专家系统、模糊神经网络、支持向量机、人工神经网络、贝叶斯网络等。这些方法虽然考虑了负荷数据的非线性特性,但忽略了负荷数据序列的时序性,需要人为地添加与时间有关的特征。混合模型主要分为两类,一类是基于权重的组合方法,即采用不同的模型分别对电力负荷进行预测,然后根据预测精度为每种预测方法分配一个加权系数,最后合并加权得到最终的预测结果;这些组合模型综合了单个模型的优点,提高了预测结果的精度,但是由于没有降低原始数据的复杂性,限制了预测的精度;另一类是采用数据预处理的方法,将电力负荷序列分解为更有规律、更平稳的分量,然后对各个分量分别建立合适的预测模型,最终的结果是各分量预测结果之和。各种多尺度分解方法都应用到了电力负荷预测中,如小波分解(WT),经验模态分解(EMD)等。小波分解虽然可以将原始序列分解为更有规律的分量,但是小波基函数和分解级数需要人为地确定,不能保证信号的最优分解;EMD虽然能够自动地确定分解个数,但是EMD分解得到的IMFs可能会出现模态混叠的现象。

发明内容

针对现有技术的不足,本发明提出一种基于长短时记忆神经网络的短期电力负荷预测方法,包括如下步骤:

步骤1:统计电力负荷历史数据和气象历史数据,构建历史数据集,所述历史数据集包括t时刻的电力负荷值x(t)、t时刻的温度值T(t),以及t时刻当天的日最高温度值Tmax(t)、日最低温度值Tmin(t),定义n个电力负荷值构成的集合为电力负荷历史序列X,记为X={x(1),x(2),…,x(t),…,x(n)},t=1,2,…n;

步骤2:采用集成经验模态分解法,将电力负荷历史序列X分解为M组分量集,每组分量集包括不同频率的本征模函数分量和一个残差分量,通过计算M组分量集中相同时刻电力负荷的平均值,得到一组平均值分量集;

步骤3:计算平均值分量集中每个平均值分量的样本熵值,并根据样本熵值进行分组;

步骤4:构建每个分组Fb的最优长短时记忆神经网络模型,得到f个最优长短时记忆神经网络模型;

步骤5:预测当天Tt时刻的电力负荷时,记录当天Tt时刻的温度值,以及当天的最高温度值、最低温度值;同时统计过去h天内每天的Tt时刻所对应的电力负荷历史值;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010705130.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top