[发明专利]一种基于主动判别性跨域对齐的低分辨人脸识别方法在审
申请号: | 202010465593.4 | 申请日: | 2020-05-28 |
公开(公告)号: | CN111695456A | 公开(公告)日: | 2020-09-22 |
发明(设计)人: | 张凯兵;郑冬冬;张天歌;李敏奇;景军锋;卢健;陈小改 | 申请(专利权)人: | 西安工程大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06F17/14;G06F17/16;G06F17/18;G06N3/08 |
代理公司: | 西安弘理专利事务所 61214 | 代理人: | 弓长 |
地址: | 710048 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 主动 判别 性跨域 对齐 分辨 识别 方法 | ||
本发明公开了一种基于主动判别性跨域对齐的低分辨人脸识别方法,具体为:构造HR图像集、LR人脸图像集,从LR人脸图像集中挑选源域样本,形成源域样本集,剩余的LR人脸图像形成目标域样本集;同时减小源域与目标域样本之间的统计分布差异;构造判别对齐矩;建立源域与目标域样本的线性变换关系;构造并求解目标函数,计算源域及标域样本变换矩阵,用最近邻分类器推断出目标域人脸变换特征的类别标签。本发明通过线性变换将源域与目标域人脸特征空间变换到一个公共域子空间中实现LR人脸的匹配识别,采用主动学习选择具有代表性和多样性的源域样本训练分类器,提升算法的识别性能。
技术领域
本发明属于人脸识别方法技术领域,涉及一种基于主动判别性跨域对齐的低分辨人脸识别方法。
背景技术
人脸识别是计算机视觉领域最重要的研究课题之一。目前,在受控条件下的高分辨(High-Resolution,简称HR)人脸识别方法已趋于成熟,在很多生产实践中开始大范围推广应用。然而,在实际的非受控条件下,受姿态、光照、表情、遮挡和分辨率等不利因素的影响,致使摄像头捕获的人脸图像与真实的高分辨人脸图像之间的数据分布存在巨大差异,进而使得人脸识别系统的性能急剧下降,无法满足实际应用要求。因此,研究低分辨率(Low-Resolution,简称LR)人脸的识别技术受到研究者的广泛关注。
在过去几十年,人们提出了许多不同的低分辨人脸识别方法。根据识别原理的不同,大体可以分为三种类型:基于重构超分辨(Super-Resolution,简称SR)图像的LR人脸识别方法、基于公共特征子空间的LR人脸识别方法和基于深度学习的LR人脸识别方法。
基于重构SR图像的LR人脸识别方法发展迅速,该类方法主要利用图像SR重建技术,获得视觉效果较好的HR人脸图像实现人脸的相似性匹配。尽管基于图像SR的方法能够获得视觉效果较高的HR人脸图像,但容易在人脸关键特征点处引入伪像,严重影响识别性能;而且,随着监控网络的大面积覆盖,该类方法的计算复杂度较高,而难以满足实际应用要求。
近年来,基于公共特征子空间的LR人脸识别方法由于其算法相对简单,耗时少等优点,成为一条解决HR-LR人脸图像特征维度不匹配问题的有效途径。此类方法通过学习HR-LR人脸的耦合映射,将不同维数的HR-LR人脸图像先映射到一个公共特征子空间,然后在维数相同的特征子空间中完成HR-LR人脸图像的相似性匹配。目前针对公共特征子空间的LR人脸问题主要有两种常见的解决方法,其中第一种是基于字典学习和稀疏表示的LR人脸识别方法,该方法主要通过字典学习和稀疏表示对人脸的局部结构特征进行稀疏编码后变换到低维特征空间中实现LR人脸的匹配。第二种是基于耦合映射的LR人脸识别方法,一般有3种映射方式:1)将HR人脸图像下采样到和LR人脸图像同一特征维度进行匹配;2)将LR人脸图像上采样到和HR人脸图像同一特征维度进行匹配;3)同时将HR-LR人脸图像映射到公共特征子空间进行匹配。其目的是将HR-LR训练人脸图像特征变换到公共特征子空间来学习HR-LR耦合映射矩阵,然后将HR耦合映射矩阵和LR耦合映射矩阵分别变换到公共特征子空间后,实现LR测试人脸图像特征的变换与识别。
随着深度学习的迅速发展,基于深度学习的LR人脸识别方法相继被提出,相比传统机器学习算法,深度学习在处理大量训练样本时更具有优势。其主要通过卷积神经网络提取人脸特征,采用有效的激活函数和损失函数对网络参数进行优化,实现端到端HR-LR人脸的识别。
现有的方法在现实应用场景中,因被监控人群与监控设备距离较远而导致摄像头捕获的人脸图像通常出现LR、尺寸小和失真等现象,即摄像头捕获的人脸图像与真实的高分辨人脸图像之间存在巨大的数据分布差异,从而严重影响直接与高分辨参考人脸图像的匹配识别。
发明内容
本发明的目的是提供一种基于主动判别性跨域对齐的低分辨人脸识别方法,通过线性变换将源域与目标域人脸特征空间变换到一个公共域子空间中实现LR人脸的匹配识别,采用主动学习选择具有代表性和多样性的源域样本训练分类器,提升算法的识别性能。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安工程大学,未经西安工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010465593.4/2.html,转载请声明来源钻瓜专利网。