[发明专利]用于微型扬声器的音膜及其制备方法有效
申请号: | 202010187274.1 | 申请日: | 2020-03-17 |
公开(公告)号: | CN113411738B | 公开(公告)日: | 2023-08-22 |
发明(设计)人: | 杨超;小克里斯托弗·B·沃克 | 申请(专利权)人: | 3M创新有限公司 |
主分类号: | H04R31/00 | 分类号: | H04R31/00;H04R7/06 |
代理公司: | 中科专利商标代理有限责任公司 11021 | 代理人: | 牛海军 |
地址: | 美国明*** | 国省代码: | 暂无信息 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 用于 微型 扬声器 及其 制备 方法 | ||
本发明提供用于微型扬声器的音膜及其制备方法,所述音膜为单层音膜或多层音膜,包括至少一层经化学交联的热塑性聚氨酯弹性体,其中:在25℃到150℃的温度范围内,所述经化学交联的热塑性聚氨酯弹性体由流变曲线测量的损耗因子小于或等于0.4。根据本发明的技术方案的用于微型扬声器的音膜易于通过热成型制备,同时具有适当的模量、良好的强度、弹性和热稳定性。
技术领域
本发明涉及关于声学器件的技术领域,具体而言,本发明提供一种用于微型扬声器的音膜以及一种制备用于微型扬声器的音膜的方法。
背景技术
随着手机行业的快速发展,客户对于手机多媒体应用的需求日益增加,对手机声音的品质要求也进一步提高。微型扬声器作为手机的发声部件,其发声品质直接决定了手机的多媒体音效。微型扬声器的发声原理在于音圈在电磁力的作用下推动音膜振动,进而推动空气产生声音。音膜的作用是推动空气,提供阻尼并且在振动期间保持快速的响应。音膜振动的稳定性直接决定了扬声器的发声品质。
其一,用于微型扬声器的音膜应具有一定的刚性和强度,以产生高的声压以及较宽的频率覆盖范围;其二,用于微型扬声器的音膜应具有高度阻尼性,以具有流畅的频率响应特性;其三,用于微型扬声器的音膜应具有高回弹性能,以具有较大的振幅,使扬声器具有高音量。但很难找到一种材料同时具有高刚性和良好的阻尼性。通常需要在膜材料的刚性和阻尼性方面做出折衷,或者将刚性材料与高度阻尼性材料组合。此外,也很难有一种材料同时具有高刚性、高强度和高回弹性。
早期的微型扬声器的音膜通常采用单层的塑性材料膜片,包括例如聚丙烯(PP)膜、聚对苯二甲酸乙二醇酯(PET)膜、聚酰亚胺(PI)膜、聚萘二甲酸乙二醇酯(PEN)膜、聚醚醚酮(PEEK)膜等。这些塑性材料的玻璃化转变温度Tg较高,可以在较高的使用温度下保持高刚性,维持音膜的形状;同时还可以产生高声压,覆盖较宽的频率范围。但音膜材料的玻璃化转变温度Tg过高,也会增加音膜制备过程中热成型工艺的难度,因为热成型的温度需要高于塑性材料的玻璃化转变温度Tg。
随着终端用户对扬声器音质及音量要求的提高,逐渐出现了包括如上所述的塑料膜片的多层复合膜结构,包括三层膜、五层膜及七层膜结构。在多层膜结构设计中采用了阻尼胶层,其主要作用在于提升音膜振膜的稳定性、控制膜片f0和降低失真,进而提升音质。通常采用的阻尼胶层的材质包括亚克力阻尼胶、有机硅阻尼压敏胶等等。采用了阻尼层的多层音膜可以具有较流畅的频率响应,但由于音膜中的塑性材料膜片刚性较强,回弹性能较差,音膜可适用的振幅(音量)很小。
将弹性体材料应用于音膜中可以有效解决涉及回弹性的问题。事实上,在大型扬声器的制造中,广泛采用橡胶材料制作折环部件。在音膜上增加折环结构可以有效降低振动时对音膜的拉伸,从而改善音膜振动的稳定性。针对微型扬声器,也有相关技术采用液体硅橡胶注塑成型的先例。由于其制作工艺复杂,加工难度大,注塑模具精度要求高等因素,限制了其大规模应用。
目前使用热塑性弹性体材料制作音膜时,依然采用传统的热压成型工艺来制备具有折环结构的音膜。热塑性弹性材料,尤其是热塑性聚氨酯材料的热稳定差,热成型工艺困难,材料抗蠕变性能差,不具有能满足音膜长期振动所需的力学性能,长期工作容易失效。当音膜工作温度超出热塑性弹性体材料的热成型温度后,音膜会变软并永久变形,造成结构失效。而通过化学交联法制备得到的聚氨酯薄膜,由于其具有三维网状结构,不能实现热压成型,也不适用于热压成型工艺制备的音膜。
目前本行业中对于制造工艺简单、具有良好回弹性、高刚性和高强度的用于微型扬声器的音膜仍存在巨大的需求。因此,开发出一种易于热成型制备,同时具有适当的模量,良好的强度、弹性和热稳定性的用于微型扬声器的音膜具有重要的意义。
发明内容
从以上阐述的技术问题出发,本发明的目的是提供一种用于微型扬声器的音膜及其制备方法,根据本发明的技术方案的用于微型扬声器的音膜易于通过热成型制备,具有适当的模量,良好的强度、弹性和热稳定性。
本发明人经过深入细致的研究,完成了本发明。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于3M创新有限公司,未经3M创新有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010187274.1/2.html,转载请声明来源钻瓜专利网。