[发明专利]一种缺失多视图数据的分类方法及系统有效
申请号: | 201910841231.8 | 申请日: | 2019-09-06 |
公开(公告)号: | CN110543916B | 公开(公告)日: | 2022-02-01 |
发明(设计)人: | 张长青;崔雅洁;韩宗博 | 申请(专利权)人: | 天津大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04 |
代理公司: | 北京高沃律师事务所 11569 | 代理人: | 刘凤玲 |
地址: | 300072*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 缺失 视图 数据 分类 方法 系统 | ||
1.一种缺失多视图数据的分类方法,其特征在于,包括:
获取多视图训练集和多视图测试集;所述多视图训练集包括多个缺失多视图训练样本数据和每个缺失多视图训练样本对应的真实类标签;所述多视图测试集包括多个待测试的缺失多视图样本数据;
依据所述缺失多视图训练样本数据重构隐空间,得到第一隐空间,依据所述待测试的缺失多视图样本数据重构隐空间,得到第二隐空间;一个所述缺失多视图训练样本数据对应一个第一隐空间;一个所述待测试的缺失多视图样本数据对应一个所述第二隐空间;所述第一隐空间是通过对缺失多视图训练样本数据进行随机初始化得到的;所述第二隐空间是通过对待测试的缺失多视图样本数据进行随机初始化得到的;
在当前迭代次数下,将上一迭代次数下的第一隐空间作为多视图多路神经网络模型的输入,所述缺失多视图训练样本数据作为所述多视图多路神经网络模型的输出,并以重建损失函数作为目标函数调整所述多视图多路神经网络模型中各个全连接层的权重参数,得到当前迭代次数下训练后的多视图多路神经网络模型;所述多视图多路神经网络模型是由多层全连接层组成的;所述重建损失函数表示所述第一隐空间与所述缺失多视图训练样本数据的近似程度;所述训练后的多视图多路神经网络模型为各全连接层的权重均确定后的多视图多路神经网络模型;
将上一迭代次数下的第一隐空间和所述真实类标签作为训练后的多视图多路神经网络模型的输入,所述缺失多视图训练样本数据作为训练后的多视图多路神经网络模型的输出,并以总损失函数作为目标函数,调整所述第一隐空间,得到当前迭代次数下训练后的第一隐空间;所述总损失函数由所述重建损失函数和分类损失函数构成;所述分类损失函数表示所述第一隐空间的预测类标签与所述真实类标签的近似程度;
判断所述重建损失函数、所述总损失函数是否均收敛;
若是,则将当前迭代次数下训练后的多视图多路神经网络模型确定为训练好的多视图多路神经网络模型,将当前迭代次数下训练后的第一隐空间确定为第一完备隐空间;所述第一完备隐空间的完备程度大于所述第一隐空间的完备程度;一个所述第一隐空间对应一个第一完备隐空间;
若否,则迭代次数加1,更新当前迭代次数,并返回所述在当前迭代次数下,将上一迭代次数下的第一隐空间作为多视图多路神经网络模型的输入,所述缺失多视图训练样本数据作为所述多视图多路神经网络模型的输出,并以重建损失函数作为目标函数调整所述多视图多路神经网络模型中各个全连接层的权重参数,得到当前迭代次数下训练后的多视图多路神经网络模型;
将所述第二隐空间输入至训练好的多视图多路神经网络模型中,并以所述重建损失函数作为目标函数,调整所述第二隐空间,直至所述重建损失函数收敛,得到第二完备隐空间;所述第二完备隐空间的完备程度大于所述第二隐空间的完备程度;
计算所述第二完备隐空间中的待测试的缺失多视图样本数据分别与所有第一完备隐空间中的缺失多视图训练样本数据的兼容函数,并将兼容函数的最大均值对应的缺失多视图训练样本数据的真实类标签作为待测试的缺失多视图样本的类标签。
2.根据权利要求1所述的一种缺失多视图数据的分类方法,其特征在于,在所述将所述第二隐空间输入至训练好的多视图多路神经网络模型中,并以所述重建损失函数作为目标函数,调整所述第二隐空间,直至所述重建损失函数收敛,得到第二完备隐空间之前,还包括:
依据所述第一完备隐空间对所述训练好的多视图多路神经网络模型进行微调,得到微调后的多视图多路神经网络模型。
3.根据权利要求2所述的一种缺失多视图数据的分类方法,其特征在于,所述依据所述第一完备隐空间对所述训练好的多视图多路神经网络模型进行微调,得到微调后的多视图多路神经网络模型,具体包括:
将所述第一完备隐空间输入至所述训练好的多视图多路神经网络模型中,并以所述重建损失函数作为目标函数调整所述训练好的多视图多路神经网络模型中各个全连接层的权重参数,直至所述重建损失函数收敛,得到微调后的多视图多路神经网络模型。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910841231.8/1.html,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置