[发明专利]一种基于长短记忆网络与深度数据清洗的金融时间序列预测方法,装置及服务器在审

专利信息
申请号: 201910644496.9 申请日: 2019-07-17
公开(公告)号: CN110334881A 公开(公告)日: 2019-10-15
发明(设计)人: 李振军;谭舜泉;倪良宇;陆芸婷 申请(专利权)人: 深圳大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q40/06;G06N3/04;G06N3/08
代理公司: 深圳市恒申知识产权事务所(普通合伙) 44312 代理人: 李红梅
地址: 518060 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 时间序列 神经网络模型 记忆网络 时间循环 金融 时间序列预测 自动编码器 深度数据 训练集 堆叠 服务器 清洗 本征模态函数 股票价格预测 经验模态分解 时间序列数据 数据处理领域 无监督学习 股票金融 降维处理 金融预测 模态函数 冗余数据 测试集 验证集 截取 降维 压缩 预测 应用
【说明书】:

发明属于金融时间序列数据处理领域,公开了一种基于长短记忆网络与深度数据清洗的金融时间序列预测方法、装置和服务器,方法包括:截取股票金融时间序列数据,进行经验模态分解后获得本征模态函数序列;采用降维处理对本征模态函数序列中的冗余数据进行压缩;采用堆叠自动编码器对降维得到的数据进行无监督学习,获得金融时间序列的深层特征;将金融时间序列的深层特征按照比例分为训练集、验证集和测试集,并采用训练集对时间循环神经网络模型进行训练后获得训练好的时间循环神经网络模型;根据训练好的时间循环神经网络模型对金融时间序列进行预测。本发明通过将堆叠自动编码器和长短期记忆网络结合并应用于股票价格预测来提高金融预测的速度和准确性。

技术领域

本发明属于金融时间序列数据处理领域,更具体地,涉及一种基于长短记忆网络与深度数据清洗的金融时间序列预测方法。

背景技术

在全球经济、金融一体化的今天,金融市场不断呈现出很多经典金融理论无力解释的复杂现象,主要表现为:金融市场不再是有效市场假说描述下的理想市场,金融市场呈现出的高智能性、强相关性、紧耦合性使它成为一个复杂的非线性动力系统。构建预测模型对这样一个复杂的非线性动力系统进行描述,揭示金融时间序列运行的内在规律,并在世人面前展示它的演化机制,方便人们防范金融风险、管理市场和监督市场,毫无疑问都具有重大的现实意义和理论价值。

金融时间序列是属于时间序列数据的一种,具有很强的时间性,数据前后具有很强的依赖性,且无法调整顺序,一般都是二维数据。现有的金融时间序列分析大多只考虑分析收盘价,但是股指每天都在最高价和最低价之间振荡,如果只分析收盘价,就丢失了很多有用的数据信息,这会造成预测的信息不全面,不能满足市场投资者的要求。这就要求需要对原始的金融数据进行深度的清洗后抽取更为有效的特征,完善预测模型。

受市场噪声和政策易变特征的影响,股票市场预测通常被认为是金融时间序列预测中最具挑战性的问题之一。如何准确预测股票走势仍然是经济、社会领域中的一个悬而未决的问题。在过去的几十年中,机器学习模型,例如人工神经网络(ANNs)和支持向量回归(SVR),已被广泛应用于股票走势预测,并获得一定的预测成果。

考虑到金融时间序列特别是股票时间序列的复杂性,将深度学习与金融市场预测相结合被认为是金融领域发展的重大趋势之一。然而,这个领域仍然处于探索的初期阶段。

目前金融预测研究中广泛使用三种主要的深度学习方法,包括卷积神经网络(CNN),深信念网络(DBN)和堆叠自动编码器(SAE)。深度学习应用于金融的相关工作主要集中于前两种,而对于堆叠自动编码器方法是否可以应用于金融市场预测,很少有人研究该领域的相关问题。

发明内容

针对现有技术的缺陷,本发明提供了一种基于长短记忆网络与深度数据清洗的金融时间序列预测方法,其目的在于通过将堆叠自动编码器和长短期记忆网络结合并应用于股票价格预测来提高金融预测的速度和准确性。

本发明提供了一种基于长短记忆网络与深度数据清洗的金融时间序列预测方法,包括下述步骤:

(1)采用窗口宽度为W的滑动窗口实时截取股票金融时间序列数据,并对截取的数据进行经验模态分解后获得本征模态函数序列;

(2)采用降维处理对本征模态函数序列中的冗余数据进行压缩;

(3)采用堆叠自动编码器对降维得到的数据进行无监督学习,获得金融时间序列的深层特征;

(4)将金融时间序列的深层特征按照比例分为训练集、验证集和测试集,并采用训练集对时间循环神经网络模型进行训练后获得训练好的时间循环神经网络模型;

(5)根据训练好的时间循环神经网络模型对金融时间序列进行预测。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳大学,未经深圳大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910644496.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top