[发明专利]一种迭代容积点无迹卡尔曼滤波方法在审

专利信息
申请号: 201811058809.4 申请日: 2018-09-11
公开(公告)号: CN109388778A 公开(公告)日: 2019-02-26
发明(设计)人: 徐晓苏;梁紫依;杨阳;袁杰;刘兴华 申请(专利权)人: 东南大学
主分类号: G06F17/15 分类号: G06F17/15;G06F17/16;G06F17/18
代理公司: 南京众联专利代理有限公司 32206 代理人: 叶涓涓
地址: 211189 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 无迹卡尔曼滤波 迭代 算法 权重 非线性滤波 非线性系统 卡尔曼滤波 迭代计算 发散问题 高自由度 加权系数 滤波结果 随机噪声 统计特性 协同处理 有效应用 重新确定 计算量 实时性 状态量 发散 拟合 定性
【说明书】:

发明公开了一种迭代容积点无迹卡尔曼滤波方法,包括以下步骤:迭代容积点无迹卡尔曼滤波算法sigma点的选取;重新确定sigma点的加权系数;给出容积点无迹卡尔曼滤波算法的流程;迭代计算容积点无迹卡尔曼滤波算法。本发明能够有效应用在含有随机噪声的高自由度强非线性的系统中,协同处理解决计算量问题、非线性滤波发散问题、负权重问题,能够有效提高状态量的估计精度和实时性,不会使滤波结果发散。本发明相对于容积卡尔曼滤波可以更好地拟合非线性系统函数的统计特性,相对于无迹卡尔曼滤波可以避免sigma点权重的非正定性。

技术领域

本发明属于通信导航技术领域,涉及一种迭代容积点无迹卡尔曼滤波方法。

背景技术

卡尔曼滤波技术是通过系统输入输出观测数据,对系统状态进行最优估计的算法,具有重要的意义,在通信,导航,制导与控制等多领域得到了较好的应用。在含有已知噪声的线性定常系统中,一般的线性卡尔曼滤波即可有效使用,但是在非线性系统中,由于状态转移矩阵无法被线性的表示,因此有多种改进的卡尔曼滤波技术产生。

扩展卡尔曼滤波是将非线性系统函数按照泰勒展开,取其线性部分进行状态矩阵的求解,此方法虽然相比于其他非线性滤波在计算量上较小,但无法解决高自由度非线性强的系统估计问题。容积卡尔曼滤波和无迹卡尔曼滤波是一种以点来拟合线的滤波技术,通过在非线性函数中取一系列的点,然后通过点集的映射来拟合整个非线性函数,无迹卡尔曼滤波流程如图1所示,容积点的特点是权重相同,但是容积点无法很好拟合强非线性函数的统计特性,而无迹卡尔曼滤波的sigma点在滤波过程中权重会变为负数,这会使滤波的结果发散。

综上所述,面对实际环境中多种传感器间的非线性耦合、协同导航模式,传统的滤波方式无法将计算量问题、非线性滤波发散问题、负权重问题协同处理,需要得到改进。

发明内容

为解决上述问题,本发明公开了一种迭代容积点无迹卡尔曼滤波方法,在原有卡尔曼滤波方法上进行改进,能够有效应用在高自由度强非线性的系统中。本发明首先给出了新的sigma点的选取方法;其次根据滤波过程中权重正定性的要求,给出了各sigma点的权重系数,更接近状态量的统计特性,从而解决了传统无迹卡尔曼滤波由于误差协方差矩阵的非正定性引起的滤波发散问题;再次,给出了一般性的容积点卡尔曼滤波算法的设计流程;最后利用参数迭代的方式,在线诊断滤波中sigma点权重的正定性。

为了达到上述目的,本发明提供如下技术方案:

一种迭代容积点无迹卡尔曼滤波算法,包括如下步骤:

1)迭代容积点无迹卡尔曼滤波算法sigma点的选取:将容积卡尔曼滤波算法中选取的容积点添加到无迹卡尔曼滤波算法的sigma点中,形成新的sigma点集在线计算状态量的均值和协方差;

2)重新确定sigma点的加权系数:重新确定滤波过程中sigma点的权重系数,在线计算上一时刻状态预测值的平均值,并与通过sigma点非线性映射加权平均计算后的状态量相比,确定权重系数的正定性,通过对sigma点加权平均计算后的状态量平均值必须等于前一步状态预测值的平均值,并且保证在整个滤波过程中权重均是正定的;

3)给出容积点无迹卡尔曼滤波算法的流程:利用改进后的sigma点拟合非线性函数,并通过非线性映射后的统计特性更新最优估计的状态量和协方差矩阵;

4)迭代计算容积点无迹卡尔曼滤波算法:在容积点无迹卡尔曼滤波中引入卡尔曼增益迭代系数,并实时检测滤波过程中权重的正定性,避免滤波的发散。

进一步的,所述步骤1)中迭代容积点无迹卡尔曼滤波算法sigma点的选取的具体步骤包括:

(1.1)在容积积分中,利用2n个等权球面点来积分计算∫f(y)dy,其中f(y)是任意非线性系统函数,其中,n是函数变量的个数;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811058809.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top