[发明专利]接触模式微加速度计有效

专利信息
申请号: 201810253047.7 申请日: 2018-03-26
公开(公告)号: CN108490217B 公开(公告)日: 2020-08-25
发明(设计)人: 李凯;彭志辉 申请(专利权)人: 温州大学
主分类号: G01P15/125 分类号: G01P15/125
代理公司: 温州金瓯专利事务所(普通合伙) 33237 代理人: 陈晖
地址: 325000 浙江省温州市瓯海*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 接触 模式 加速度计
【说明书】:

一种接触模式微加速度计。它包括下基底、上基底,下基底和上基底之间设有支撑柱、薄板与其若干支撑梁及梁的锚点,所述下基底、上基底分别设有下、上定电极,所述定电极表面覆盖设有若干条凸起的绝缘层,所述薄板的下、上表面分别设有下、上动电极,所述微加速度计具有薄板与动电极受力发生变形但未与绝缘层接触的第一工作状态及薄板与动电极受力变形并与绝缘层接触的第二工作状态。本发明利用加速度力引起动电极变形从而改变其与定电极间电容的原理进行工作。本发明通过位于定电极上的绝缘层防止动、定电极的短路,并由绝缘层提供对活动结构的支撑,故能实现高加速度的测量,梁‑圆形薄板组合结构能有效抑制传感器的电容饱和,绝缘层上凸起能有效抑制滞后误差。

技术领域

本发明涉及微机电系统领域,特别涉及一种接触模式微加速度计。

背景技术

加速度计广泛应用于工业、军事、航空、日常生活等众多领域。按工作原理,微加速度计可分为电容式、压阻式、压电式等。其中,电容式具有功耗低、响应快、灵敏度高等优点,其工作原理是:由定电极与动电极构成可变电容,其中动电极位于加速度敏感结构上并因加速度力作用而运动,则通过对动、定电极间电容值的测量可知加速度的大小。传统上电容式微加速度计的活动结构主要采用梳齿结构或由梁和刚性质量块构成的梁-质量块结构,且一般认为后者具有更高的灵敏度。采用梁-质量块结构的电容式微加速度计的量程主要受两个因素的影响:一是为防止动、定电极短路所允许的质量块最大位移值,即动、定电极初始间隙,二是梁-质量块结构的力学强度。近年来,在另一类电容式微传感器即电容式微压力传感器中,提出了一种基于接触模式的工作原理:在定电极上或动电极上覆盖绝缘层,从而防止电极间短路的发生,且承受被测压力而发生变形的薄板(薄膜)因接触力的作用而得到支撑,所以传感器的量程得到了很大的扩展。此外,动、定电极上发生接触的部分仅相隔很薄的一层绝缘层,且绝缘层的介电常数一般为真空或空气的数倍,则根据电容值与电极间隙成反比并与介电常数成正比可知在接触模式下电极间的电容值得到了提高,抗噪声能力因而也得到了提高,并能在一定加速度范围内实现很高的灵敏度。在接触模式下,电容式微压力传感器中的薄板因压力不同而发生不同的变形并因而与绝缘层之间有不同的接触面积,从而实现对压力的测量。但是,对于采用梁-质量块结构的电容式微加速度计而言,由于质量块为刚性结构,只能做平移运动而不发生变形,以上接触模式不能直接适用。

在以往的接触模式电容式传感器中,电容饱和问题是影响灵敏度的重要因素。所谓电容饱和是指当被测信号达到一定值以后,动、定电极间的电容趋于停止变化。造成这种现象的一个主要原因是随着接触面积的增大,发生变形的结构上剩余未变形部分面积越来越小,刚度越来越大,从而使得变形越来越困难。对于电容式微加速度计而言,若采用接触模式,同样需要考虑电容饱和问题。

在微机电系统中,尺度效应导致分子间力——范德华力不可忽略。该力随分子间距离的减小而急剧增大。在接触模式下,动电极与绝缘层在较大面积上存在两者分子间距非常小的情况,故范德华力较大。另外,动电极与绝缘层之间的相对运动还导致摩擦力的产生。根据大量文献包括有关接触模式微压力传感器的文献可知,范德华力、摩擦力能给传感器造成显著的滞后误差(回程误差)。对于微加速度计而言,所测信号往往在很短时间内经历从小到大再从大到小的动态变化,则对滞后误差更加敏感。

发明内容

为了解决背景技术中的问题,本发明提供一种抑制电容饱和与滞后误差,具有高量程特点的接触模式微加速度计。

本发明解决其技术问题所采用的技术方案是:一种接触模式微加速度计,包括:下基底、上基底,下基底和上基底之间设有支撑柱、薄板与其若干支撑梁及梁的锚点,所述下基底、上基底设有定电极,所述定电极表面覆盖有绝缘层,所述薄板的下、上表面设有动电极,所述微加速度计具有薄板与动电极受力发生变形但未与绝缘层接触的第一工作状态及薄板与动电极受力变形并与绝缘层接触的第二工作状态。

所述绝缘层表面设有若干条凸起。

所述薄板上设有大量通孔。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于温州大学,未经温州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810253047.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top