[发明专利]基于分数阶幂次切换律的四旋翼无人机飞行控制方法有效
申请号: | 201711430426.0 | 申请日: | 2017-12-26 |
公开(公告)号: | CN107992082B | 公开(公告)日: | 2020-05-08 |
发明(设计)人: | 殷春;程玉华;胡彬杨;时晓宇;周静;薛建宏;张博 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G05D1/10 | 分类号: | G05D1/10;G05D1/08 |
代理公司: | 成都行之专利代理事务所(普通合伙) 51220 | 代理人: | 温利平 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 分数 阶幂次 切换 四旋翼 无人机 飞行 控制 方法 | ||
本发明公开了一种基于分数阶幂次切换律的四旋翼无人机飞行控制方法,控制器整体使用反步控制结构,将四旋翼无人机的二阶非线性系统拆分为两个子系统,并分别构建满足李亚普诺夫稳定性理论的控制律,并通过虚拟中间控制变量将二者串联成为一完整控制器,使控制器能够很好的适配系统的非线性,且具有良好的完整性;同时,为了增强控制器的抗扰动能力和鲁棒性,在第二次反步设计时,对被控变量进行滑模控制设计,引入滑模控制的高抗扰能力、强鲁棒性。
技术领域
本发明属于无人机控制技术领域,更为具体地讲,涉及一种基于分数阶幂次切换律的四旋翼无人机飞行控制方法。
背景技术
随着航空航天技术的发展,以及人们对智能化设备越来越大的需求,无人机开始走进人们的生产、生活甚至是军事活动中,也吸引了一大批科研工作者的注意力,致力于提高其飞行性能,并扩大其应用范围。而四旋翼无人机凭借其诸多优势,如结构简单,飞行灵活,成本较低,尤其是垂直起降等,成为了无人机研究领域中的一大热点。
虽然四旋翼无人机的结构相对简单,但是由于其本身是欠驱动非线性系统,各状态变量间又具有较强的耦合性,因此其控制反而相对复杂。如今对四旋翼飞行器的控制技术正在快速发展,但是都存在一定的问题,如PID控制方法对非线性多输入多输出系统的不适性,反步控制方法较弱的抗干扰和鲁棒特性,以及反步滑模控制方法可能存在的强烈抖动等,都给四旋翼无人机控制方法的研究留下了提升的空间。
分数阶微积分理论是关于任意阶微分、积分的理论,与整数阶微积分几乎同时出现,但又是整数阶微积分的延伸。近年来,分数阶微分方程凭借其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,越来越多地被用来描述光学、热学、流变学、材料、力学系统,以及信号处理、系统识别、控制和机器人等他应用领域中的问题,成为复杂力学与物理过程数学建模的重要工具之一。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于分数阶幂次切换律的四旋翼无人机飞行控制方法,通过设计三个姿态角及高度对应的控制器,来控制四旋翼无人机飞行,具有很强的完整性、鲁棒性以及抗扰动能力。
为实现上述发明目的,本发明一种基于分数阶幂次切换律的四旋翼无人机飞行控制方法,其特征在于,包括以下步骤:
(1)、基于牛顿-欧拉原理对无人机进行动力学分析建立无人机动力学模型
无人机动力学模型包括平移运动模型和旋转运动模型,其中,平移运动模型为:
其中,(x,y,z)为无人机在地坐标系下的位置坐标,分别为x,y,z的二阶导,γ,μ,ρ分别是描述无人机的三个姿态角,即滚转角、俯仰角和偏航角,FT是旋翼产生的总升力,m是无人机总质量,g是重力加速度;
旋转运动模型为:
其中,Ix,Iy,Iz是无人机在x,y,z三个方向上的转动惯量,Nx,Ny,Nz是无人机三个轴方向的力矩;
(2)、分别设计三个姿态角对应的控制器
(2.1)、对滚转角γ进行误差分析:设实际滚转角γ与期望值γd的误差为:Eγ1=γ-γd;将Eγ1与滚转角误差阈值ζ比较,若Eγ1小于阈值ζ,则表示四旋翼无人机飞行系统稳定,并结束;反之则进入步骤(2.2);
(2.2)、设计等效控制律
取虚拟控制变量其中,是滚转角期望值的导数,c1为正常数;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711430426.0/2.html,转载请声明来源钻瓜专利网。