[发明专利]一种融合颜色矩信息的三维点云配准方法有效

专利信息
申请号: 201711398961.2 申请日: 2017-12-21
公开(公告)号: CN108062766B 公开(公告)日: 2020-10-27
发明(设计)人: 杨旸;陈维乐;李夏琼;陈卓;范丹丹;崔文婷;张思睿 申请(专利权)人: 西安交通大学
主分类号: G06T7/33 分类号: G06T7/33
代理公司: 西安智大知识产权代理事务所 61215 代理人: 何会侠
地址: 710049 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 融合 颜色 信息 三维 点云配准 方法
【说明书】:

一种融合颜色矩信息的三维点云配准方法,已知模板颜色点云和待配准的目标颜色点云,在给定初始配准参数的基础上,第一步分别计算两个点云中每个点的颜色一阶矩、二阶矩和三阶矩特征;第二步根据融合了点云三维空间信息和颜色矩信息的形状‑颜色联合特征设计点云配准的目标函数;第三步根据联合特征的加权距离度量,构建模板颜色点云和目标颜色点云之间点对点的对应关系;第四步利用模板颜色点云和目标颜色点云之间点对点的对应关系求解空间配准的变换参数,并对目标颜色点云进行空间变换;第五步迭代上述的第三步和第四步,直至达到迭代终止条件,最终完成模板颜色点云与目标颜色点云的配准;本发明能够有效地降低由于点云局部缺失和噪声对配准结果的影响,提高三维点云配准的精确性与鲁棒性。

技术领域

本发明涉及计算机视觉与图像处理技术领域,具体涉及一种融合颜色矩信息的三维点云配准方法。

背景技术

三维点云配准是计算机视觉与图像处理领域中的一个经典问题,以点云配准为基础的三维模型重建在场景重建、3D打印、医学影像分析等领域有着广泛应用。目前常见的点云RGB-D采集设备例如Kinect包含有深度传感器和彩色摄像头,可以采集到高密度低噪声的三维彩色点云。在使用采集设备进行点云采集时,由于单次扫描只能得到物体一个局部的点云数据,一般需要分多次对同一物体在不同角度位置进行扫描,才能得到物体完整的点云数据,但由于每一次扫描时采集设备的扫描位置和角度信息均会发生变化,还需要对采集到的所有点云数据进行配准才能完成整个物体的重建。

在同一个坐标系下存在两个相同或部分相同的点云,其中一个点云作为模板,另一个点云作为目标颜色点云,点云配准的目标是求解空间变换旋转参数R和平移参数T,将目标颜色点云利用参数完成旋转平移变换后,其与模板颜色点云相同的部分可以重合。三维重建的过程就是将采集到的所有点云进行配准,最终形成一个完整的模型点云。

在点云配准算法中最著名的算法是迭代最近点算法(Iterative Closest PointsAlgorithm)[1]。在ICP算法中,通过寻找两个点云之间距离最近的对应点对,迭代计算使对应点对之间距离的均方误差最小的最佳刚体变换。然而传统ICP算法及其改进算法仅使用了点云的空间形状信息,即点的空间三维坐标,使得在遇到待配准点云之间的部分点云缺失和噪声问题时会造成对配准精度的影响。随着RGB-D点云采集设备的发展,对物体扫描出的点云数据中每个点都具有高精度的三维空间坐标和颜色值。为了克服传统ICP的一些缺点,目前提出了许多在ICP算法中结合使用点云的空间信息和颜色信息的算法。例如从点云的颜色信息中提取出每个点的SIFT特征,利用点云外观的相似性和几何距离作为寻找对应点的距离度量[2];在传统ICP使用的点云三维空间坐标向量(X,Y,Z)中加入点的颜色信息,例如点在HSL颜色空间中的Hue值[3]或点在Lab颜色空间的颜色值(L,a,b)[4],在算法迭代计算过程中使用包含有颜色信息的多维特征向量以减少迭代次数和提高算法精确度。

对颜色点云在配准过程中引入颜色特征的改进需求,本发明提出一种新的颜色点云配准方法,通过有效的表达点云局部颜色分布信息,生成更具有代表性的颜色特征配合点云形状特征对颜色点云进行配准,使算法的配准精度更高且计算简单。

[1]Besl,P.J.,and N.D.Mckay.A method for registration of 3-D shapes.IEEE Transactions on Pattern AnalysisMachine Intelligence 14.2(2002):239-256.

[2]Lemuz-L,R.Pez,and M.Arias-Estrada.Iterative Closest SIFTFormulation for Robust Feature Matching.International Symposium on VisualComputing Springer Berlin Heidelberg,2006:502-513.

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711398961.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top