[发明专利]基于主动被动高斯在线学习的异常检测方法有效
申请号: | 201711130646.1 | 申请日: | 2017-11-15 |
公开(公告)号: | CN107832716B | 公开(公告)日: | 2020-05-12 |
发明(设计)人: | 洪哲然;刘斌;俞能海 | 申请(专利权)人: | 中国科学技术大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 北京凯特来知识产权代理有限公司 11260 | 代理人: | 郑立明;郑哲 |
地址: | 230026 安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 主动 被动 在线 学习 异常 检测 方法 | ||
本发明公开了一种基于主动被动高斯在线学习的异常检测方法,包括:将输入的正常的连续视频帧进行预处理使目标形态上融入运动的信息,获得处理后的融合图像;利用深度神经网络提取融合图像的特征,获得一系列的特征向量;利用特征向量并结合基于主动被动规则约束的在线学习方法训练高斯分布,作为正常参考模型;在异常检测阶段,采用同样的方式对输入的连续视频帧进行预处理与特征提取操作,并求取各个特征向量在训练后的高斯分布上的分布距离,根据分布距离来判断相应特征向量是否异常。该方法可以在保证检测精度的前提下,降低训练时间并减少资源消耗。
技术领域
本发明涉及异常检测技术领域,尤其涉及一种基于主动被动高斯在线学习的异常检测方法。
背景技术
视频异常检测是关乎公共安全的计算机视觉和机器学习相结合的重要研究领域,目前有大量的精确有效的基于场景监控视频的异常检测算法,主要完成具有不同于场景中大部分目标的特殊目标检测,这种不同主要表现在外观速度或者轨迹上。
现有的异常检测技术很多的是使用手工特征来进行分类,手工特征有着算法复杂度高,算法精度较差的缺陷。由于近年来深度学习的广泛应用和出色表现,使用深度神经网络进行异常检测,也成为一种比较新的解决思路,但是由于深度信息数量大维度高,训练判别模型时具有资源占用巨大时间开销巨大的缺点。
发明内容
本发明的目的是提供一种基于主动被动高斯在线学习的异常检测方法,可以在保证检测精度的前提下,降低训练时间并减少资源消耗。
本发明的目的是通过以下技术方案实现的:
一种基于主动被动高斯在线学习的异常检测方法,包括:
将输入的正常的连续视频帧进行预处理使目标形态上融入运动的信息,获得处理后的融合图像;
利用深度神经网络提取融合图像的特征,获得一系列的特征向量;
利用特征向量并结合基于主动被动规则约束的在线学习方法训练高斯分布,作为正常参考模型;
在异常检测阶段,采用同样的方式对输入的连续视频帧进行预处理与特征提取操作,并求取各个特征向量在训练后的高斯分布上的分布距离,根据分布距离来判断相应特征向量是否异常。
由上述本发明提供的技术方案可以看出,通过基于主动被动规则约束的在线学习方法训练高斯分布,将训练后的高斯分布用于分类和提取来自视频深度信息中可能存在的异常,大大减少了传统训练手段带来的时间和计算资源消耗巨大的问题。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的一种基于主动被动高斯在线学习的异常检测方法的流程图;
图2为本发明实施例提供的一种基于主动被动高斯在线学习的异常检测方法的示意图;
图3为本发明实施例提供的计算模型和学习模型的异常检测效果比较结果。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
图1为本发明实施例提供的一种基于主动被动高斯在线学习的异常检测方法的流程图,图2为相应的示意图。如图1所示,其主要包括如下步骤:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711130646.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种自适应近邻的人脸识别算法
- 下一篇:路由器安全防护平台