[发明专利]一种LTE-A系统中CQI预测方法有效

专利信息
申请号: 201711061612.1 申请日: 2017-11-02
公开(公告)号: CN109756310B 公开(公告)日: 2020-10-20
发明(设计)人: 曾湘;赵玉萍;屈婉月 申请(专利权)人: 北京大学
主分类号: H04L5/00 分类号: H04L5/00
代理公司: 北京君尚知识产权代理有限公司 11200 代理人: 司立彬
地址: 100871 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 lte 系统 cqi 预测 方法
【说明书】:

发明公开了一种LTE‑A系统中CQI预测方法,其步骤包括:利用基站记录的CQI历史数据,生成一长度为L的CQI序列,记为向量XL;从该向量XL中截取一段由近期CQI历史数据构成的序列,记为向量XSL;向量XSL的长度为SL;在向量XL去除向量XSL之后的剩余部分中寻找与该向量XSL最相似的序列段Xkm;根据Xkm和CQI反馈时延D外推找到与待预测时刻最相似的时间点tsp,然后以tsp为基准获取之前一段长度WL的CQI历史数据序列作为预测向量Xhp;根据Xhp确定待预测时刻的CQI预测值。本发明在CQI高时延和用户移动速度相对较大时能够取得较好的效果,同时算法的复杂度低,易于硬件实现。

技术领域

本发明涉及LTE-A通信系统中的载波聚合(Carrier Aggregation,CA)技术,特别涉及载波聚合技术中一种低复杂度与高预测步长的CQI(Channel Quality Indicator,信道质量情况指示)预测方法。

背景技术

LTE-A作为LTE的演进版本,其具有更高的传输速率、更大的频谱利用率、更低的通信时延,同时可以提升移动网络性能,为用户带来更好的体验。在LTE-A通信系统引入的多项技术中,载波聚合(Carrier Aggregation,CA)技术是一项标志性技术。由于无线通信经过了长时间的发展,现有的无线频谱资源已经被2G、3G和卫星等通信系统大量占用,剩余可用的频谱资源很多都是离散的。载波聚合技术通过将多个LTE载波(Component Carrier,CC)聚合捆绑,为用户提供更大的带宽和更高的速率,但载波聚合技术也增加了用户反馈CQI给基站的时延,导致基站得到的CQI信息失真进一步导致系统性能下降。因此,对CQI进行预测是必要的。

在现有的CQI预测方案中,有多种多样的方法应用于不同的场景,有简单平均法、外推法、卡尔曼滤波法、人工神经网络法、小波变换-支持向量机(Wavelet Transform-Support Vector Machine,WT-SVM)法等等。这些预测方案受限于各自的应用场景:简单平均法只能应用于用户高速条件下,外推法只能处理线性数据;卡尔曼滤波法通常只能预测单一步长即1毫秒;神经网络法的计算量太大因而适用性不强;WT-SVM方案只能处理CQI时延4毫秒以内的预测。综上,以往的在不同场景下的CQI预测方案除了有其特殊局限外,更有一个共同的严重缺点:只能在CQI时延较小(小于6毫秒)时发挥作用。

发明内容

本发明克服了现有CQI预测方案的不足,提供了LTE-A通信场景下中高预测步长的CQI预测方法,该方案在CQI高时延和用户移动速度相对较大时能够取得较好的效果,同时算法的复杂度低,易于硬件实现。

本发明的技术方案:

一种LTE-A系统中CQI预测方法,其步骤包括:

1)利用基站已有记录的CQI历史数据序列,记为向量XL;从XL中截取最新的一段CQI历史数据序列,记为向量XSL

2)在向量XL去除XSL之后的剩余部分中寻找与向量XSL最相似的序列段Xkm,向量XL的长度远远大于向量XSL,这里的相似即几何上的相似,意为平行度最好,后边用数学方法实现是两个向量的标准差最小;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京大学,未经北京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711061612.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top