[发明专利]一种基于生成对抗网络的异常检测方法有效

专利信息
申请号: 201711032917.X 申请日: 2017-10-30
公开(公告)号: CN108009628B 公开(公告)日: 2020-06-05
发明(设计)人: 应娜;蒋威;郭春生;黄铎;王金华 申请(专利权)人: 杭州电子科技大学
主分类号: G06N3/04 分类号: G06N3/04;G06K9/62
代理公司: 浙江千克知识产权代理有限公司 33246 代理人: 周希良
地址: 310018 浙江省杭州市杭*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 生成 对抗 网络 异常 检测 方法
【说明书】:

发明公开了一种基于生成对抗网络的异常检测方法,包括步骤:S1:处理语义分割图像数据集,得到满足原始图像的数据集和Mask图像的数据集;S2:建立包括生成网络和鉴别网络的异常检测生成对抗网络结构;S3:训练所述满足原始图像的数据集和Mask图像的数据集,得到异常检测的生产对抗网络模型;S4:输入原始图像,得到特定异常类型的图像。本发明与现有技术相比有如下优点:1.本发明以异常部分图像作为模型训练目标,不同于传统异常检测方法,以异常部分具体定位信息作为训练目标,使得图像异常部分更加直观性。2.本发明建立生成对抗网络模型,不同于传统异常检测方法单一一体的网络结构。弥补了无法输出异常部分的图像的缺点。

技术领域

本发明属于GAN的图像处理领域,主要涉及街道户外异常检测,具体来说,即基于生产对抗网络的街道异常检测方法。

背景技术

生成对抗网络GAN是一种生成对抗模型,受到博弈论影响,模型通常由一个生成器和一个鉴别器构成。生成器捕获真实数据的潜在分布,并且生成新的数据样本;鉴别器是二分器,鉴别输入数据为真是数据还是由生成器生成的样本。传统的生成对抗网络旨在从随机高斯噪声中捕获真实数据分布,其目的为生成足以以假乱真的图片。生成器和鉴别器网络结构均为卷积神经网络。

生成对抗网络涉及图像翻译领域,将真实图片作为生成对抗网络输入,生成网络输出另一张图片。图片的真实性决定了生成对抗网络的性能与否。

异常检测是在真实数据中不符合其他物体,项目的识别。训练异常检测模型方法一般分为三类:无监督异常检测、监督异常检测和半监督异常检测。通常选择监督异常检测方法,训练得到输出图像中目标具体定位信息的模型。

发明内容

针对上述异常检测方法中,网络结构均为单一一体化的卷积网络,并不涉及生成对抗网络中存在两个互相对抗的网络结构,无法提供图像中异常部分的Mask区域等问题。提出了基于生成对抗的思想,结合目标检测方法,检测图像中异常部分。生成对抗思想弥补异常检测中无法生成异常Mask区域缺点。异常检测思想弥补生成对抗网络只能从噪声中恢复图像,以达到在图像翻译领域,输出异常Mask区域。

本发明采取如下技术方案:

一种基于生成对抗网络的异常检测方法,包括步骤:

S1:处理语义分割图像数据集,得到满足原始图像的数据集和Mask图像的数据集;

S2:建立包括生成网络和鉴别网络的异常检测生成对抗网络结构;

S3:训练所述满足原始图像的数据集和Mask图像的数据集,得到异常检测的生产对抗网络模型;

S4:输入原始图像,得到特定异常类型的图像。

优选的,所述步骤S3具体实施步骤如下:

S3.1:鉴别网络输出关于异常部分图像占Mask图像的第一真假可能性和网络中间层特征参数;

S3.2:生成网络生成异常部分图像,输入所述异常部分图像到鉴别网络,输出关于异常部分图像的异常可能性;输入Mask图像到鉴别网络,输出关于Mask图像的真实可能性和真实图像特征参数,并更新鉴别网络的鉴别网络参数;

S3.3:再次输入异常部分图像到鉴别网络,输出关于异常部分图像的异常可能性和异常图像特征参数,并更新生成网络的生成网络参数。

优选的,所述数据集还进行异常类型的制定。指定原始图像的数据集中异常类型(如车),得到关于异常类型的Mask数据集。

优选的,

所述生成网络,包括提取特征网络和图像生成网络;

所述鉴别网络,用于保证网络训练可靠性。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711032917.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top