[发明专利]一种基于LDA的加权平均的个性化好友推荐方法在审
申请号: | 201710944430.2 | 申请日: | 2017-10-12 |
公开(公告)号: | CN107767279A | 公开(公告)日: | 2018-03-06 |
发明(设计)人: | 宫继兵;宋艳青;高小霞;宋雅稀;刘吉辉 | 申请(专利权)人: | 燕山大学 |
主分类号: | G06Q50/00 | 分类号: | G06Q50/00;G06F17/30 |
代理公司: | 秦皇岛一诚知识产权事务所(普通合伙)13116 | 代理人: | 续京沙 |
地址: | 066004 河北省*** | 国省代码: | 河北;13 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 lda 加权 平均 个性化 好友 推荐 方法 | ||
技术领域
本发明属于互联网技术领域,涉及互联网下的社交网络推荐,尤其涉及一种基于LDA的加权平均的个性化好友推荐方法。
背景技术
随着Web2.0技术的蓬勃发展,全球逐渐迎来了社交网络(SocialNetwork)时代,一些具有代表性的社交网站已成为影响力巨大的信息平台,如:Facebook,Twitter和新浪微博等。它们将用户群体和信息结合在一起,使用户可以便捷地分享和获取信息,同时也极大地拓展了用户的社交群体。但是,随着社交网络用户迅速增多,社交网络中信息量急剧增大,对社交网络用户来说,如何在这些庞大的数据中找到合适自己的好友,扩展自己的社交网络好友圈成为一个难题。
为了解决社交网络信息量大和好友寻找困难问题,推荐和搜索成为人们关注的焦点。用户利用好友搜索功能来查找好友以扩大交际圈,但是,这种搜索浪费大量的时间,效率低,并且不具有准确性。而各大社交网络平台相继推出各种推荐策略来满足用户需求,但是,目前的推荐算法具有诸多局限性。经典的协同过滤方法,不能很好的解决数据稀疏性问题,考虑的用户信息也较少,推荐效果不理想。基于标签的推荐方法,重点考虑了用户的静态属性而忽视了更具社交价值的动态交互行为,从而不能很好的获取社交网络用户的特性,推荐效果也不理想。
已有的好友推荐方法考虑问题单一化,没有进行用户特征的全面分析,具有不同程度的局限性,因此,本发明提出了一种综合地考虑社交网络用户的多方面特征,推断用户人物画像,从而进行准确地个性化好友推荐方法。该方法通过将用户在社交网络中的结构特征(用户的动态行为)和用户节点特征(用户的静态属性)进行加权平均从而计算社交网络用户间的相似度;通过用户间的相似度进行排序,挑选前Top-N个候选用户;然后,把Top_N个用户推荐给目标用户。在本发明中使用了查准率和查全率以及F1-Measure等评估指标对好友推荐进行评估。最后,通过在真实的微博数据集上进行的实验,进一步验证了本方法能更准确的进行个性化好友推荐。
发明内容
针对已有推荐方法中没有综合考虑社交网络中用户的动态行为特征和静态属性信息的局限,本发明克服了现有技术中的不足,提供一种基于LDA的加权平均的个性化好友推荐方法。本发明将个性化的好友推荐问题抽象为提取用户的动态行为特征和静态属性信息的问题,利用加权平均的方法对上述两方面进行综合建模,获取用户间相似度信息,然后,根据用户间的相似度,挑选出前Top-N个最适合目标用户的好友,并把这些用户推荐给目标用户。
具体地,本发明是通过以下技术方案实现的:
一种基于LDA的加权平均的个性化好友推荐方法,该方法把用户的节点信息特征和社交网络结构特征利用加权平均的方法有效结合,建立统一模型的个性化好友推荐方法;所述用户的节点信息特征是指用户的静态属性;所述社交网络结构特征是指用户的动态行为;
其具体内容包括如下步骤:
步骤一:首先,获取社交网络中目标用户t的一度、二度、…m度好友形成候选好友集合C,提取目标用户和集合C中每个用户的静态属性信息,即每个用户都具有一个静态属性结构,这些静态属性信息包括目标用户和候选用户间的共同好友数,自身地理位置,以及在社交网中与自身相关的帖子;
步骤二:对于步骤一所述候选用户相关帖子,利用LDA主题建模的方法,分析候选用户关注的主题,从而推断候选用户的兴趣爱好,身份地位和年龄性别信息;然后根据社交网络目标用户的静态属性,包括目标用户与候选用户的共同好友数,目标用户和候选用户的地理位置,以及目标用户和候选用户关注的“主题”,分别对候选集合中的候选用户和目标用户进行了相似度计算,其计算依据如下:
①目标用户与候选用户的共同好友数越多,目标用户与候选用户的相似度就越高;
②线上行为可能影响线下行为,目标用户与候选用户间的地理位置越近,目标用户与候选用户间就越容易成为好友;
③目标用户和候选用户共同的话题数越多,目标用户与候选用户的兴趣就越相似,成为好友的可能性也就越大;
在本发明方法中,利用加权平均的方法为上述的各个静态属性分别赋予一个权重,同时为了平衡上述静态属性在计算社交网络中目标用户和候选用户间相似度的重要程度,使用sigmod的函数对各个特征进行缩放;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于燕山大学,未经燕山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710944430.2/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种活血化瘀的药物组合物
- 下一篇:一种治疗咽炎的药物组合物的制备方法