[发明专利]一种基于径向基神经网络上肢外骨骼运动意图识别方法有效

专利信息
申请号: 201710681749.0 申请日: 2017-08-10
公开(公告)号: CN107397649B 公开(公告)日: 2020-08-14
发明(设计)人: 吴晓光;张晋铭;邱石;张天赐;韦磊;齐文靖;谢平;李艳会;尹永浩 申请(专利权)人: 燕山大学
主分类号: B25J9/00 分类号: B25J9/00;A61H1/02;A61B5/0488
代理公司: 秦皇岛一诚知识产权事务所(普通合伙) 13116 代理人: 李合印
地址: 066004 河北省*** 国省代码: 河北;13
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 径向 神经网络 上肢 骨骼 运动 意图 识别 方法
【权利要求书】:

1.一种基于径向基神经网络上肢外骨骼运动意图识别方法,其特征在于,所述方法包括以下步骤:

步骤1,应用OpenSim人体建模理论对训练对象进行人体上肢肌肉骨骼建模,包含上肢运动相关的骨骼、肌肉仿真模型及运动数据采样标记点;

步骤2,利用肌电采集设备采集上肢健侧肌电信号u的同时使用运动捕获设备采集运动数据,包含各个标记点坐标数据P(x,y,z);

步骤3,将采集的运动数据导入到人体上肢肌肉骨骼仿真模型中,首先通过逆运动学求解推导出上肢各个关节在运动过程中的角度变化值;其次将关节角度作为输入通过逆动力学求解推导出模型上肢关节力矩τ;提取肌电特征,通过融合分析肌电信号特征值和关节角速度获取上肢运动意图识别特征指标;

步骤4,将肌电信号和关节角度信息导入径向基神经网络,输入端为上肢肌电u、关节角度θ,输出端为关节的力矩τ,根据该网络得到描述肌电、关节角度、关节力矩三者之间关系的表达式:τ=f(u,θ);识别运动意图预测关节屈伸。

2.根据权利要求1所述的基于径向基神经网络上肢外骨骼运动意图识别方法,其特征在于:在步骤3中,肌电采集设备及运动捕获设备同时采集上肢肌电信号及运动信息,提取肌电信号特征值:积分肌电比值(PiEMG),均方根比值(PRMS),作为支持向量机SVM的输入,支持向量机的输出为关节屈伸状态;同时通过分析角速度变化辨识关节屈伸状态;融合两种辨识方法,综合分析肌电信号及角速度信号的辨识结果,若两种相同,则将此结果作为上肢运动意图的最终识别结果。

3.根据权利要求1所述的基于径向基神经网络上肢外骨骼运动意图识别方法,其特征在于:在步骤4中,引入神经网络用于描述患者健侧肌电、关节角度、力矩三者之间的关系:τ=f(u,θ),τ、u、θ分别表示患者健侧上肢的关节力矩、肌肉肌电信号和关节角度;神经网络的输入端分别为与上肢关节运动相关性较大的多块肌肉的肌电信号及关节角度,输出端为关节力矩,进而可通过采集相关肌肉的肌电信号及相应的关节角度得到对应的关节力矩。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于燕山大学,未经燕山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710681749.0/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top