[发明专利]基于三维卷积神经网络的视网膜OCT图像的分类方法有效

专利信息
申请号: 201710506132.5 申请日: 2017-06-28
公开(公告)号: CN107437092B 公开(公告)日: 2019-11-15
发明(设计)人: 陈新建;刘云 申请(专利权)人: 苏州比格威医疗科技有限公司
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04
代理公司: 32224 南京纵横知识产权代理有限公司 代理人: 董建林<国际申请>=<国际公布>=<进入
地址: 215011江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 三维 卷积 神经网络 视网膜 oct 图像 分类 算法
【说明书】:

发明公开了一种基于三维卷积神经网络的视网膜OCT图像的分类算法,包括以下步骤:S01:采集三种视网膜OCT图像,对三种视网膜进行分类标记;S02:数据预处理,对三维OCT图像数据进行降采样,得到统一大小的三维图像用于输入三维卷积神经网络;S03:根据迁移学习思想,用大量标记好的自然图像预训练一个三维卷积神经网络模型;S04:用预处理好的视网膜OCT图像对训练好的三维卷积神经网络模型进行微调,在主流网络中间的卷积层后加入分支网络,将主流网络和所述分支网络的输出层进行融合;S05:将测试图像按照S02步骤进行预处理,利用S04中微调后的所述三维卷积神经网络模型进行测试,输出分类结果。本发明具有可以对三维视网膜OCT图像进行分类以及提高分类准确性的特点。

技术领域

本发明涉及一种基于三维卷积神经网络的视网膜OCT图像的分类方法,属于视网膜图像分类技术领域。

背景技术

现有的视网膜自动分类技术大部分基于眼底彩照或者小视野的视网膜OCT,即以黄斑为中心或者以视神经乳头为中心的视网膜OCT图像。相比较眼底彩照,OCT图像具有无创、高速、高分辨率、三维成像等优点,不过OCT图像中视网膜分类目前仍面临诸多挑战:图像各类之间差异不明显,图像本身存在大量斑噪声等。这些问题使得传统的方法很难取得较为精确的分类效果。卷积神经网络具有强大的学习能力,其在医学图像分类(例如,乳腺X线肿瘤图像的分类、CT肺间质图像的分类、糖尿病性视网膜眼底彩照分类等)中已取得了巨大的成功。所以考虑将该框架用于视网膜OCT图像分类的任务中。然而,以上的医学图像都是二维图像,都使用二维卷积神经网络来达到分类效果,由于OCT图像为三维图像,直接使用传统的二维卷积神经网络对图像进行分类存在不足:(1)二维网络结构不能利用图像的三维空间信息,会损失很多有用信息,从而限制了模型的分类性能;(2)卷积神经网络为多层学习网络,传统的方法只是对网络的最后一层进行监督,忽略了中间层监督对模型分类效果的影响。

发明内容

本发明所要解决的技术问题是,提供一种可以对三维视网膜OCT图像进行分类,提高分类准确性的基于三维卷积神经网络的视网膜OCT图像的分类方法。

为解决上述技术问题,本发明采用的技术方案为:

基于三维卷积神经网络的视网膜OCT图像的分类方法,包括以下步骤:

S01:采集三种三维视网膜OCT图像,分别是以黄斑为中心的视网膜OCT图像、以视神经乳头为中心的视网膜OCT图像和以大视野为中心的视网膜OCT图像,将所述三种三维视网膜OCT图像每种分类标记为2类,分别是正常视网膜图像和异常视网膜图像;

S02:数据预处理,对三维视网膜OCT图像数据进行降采样,得到统一大小的三维图像用于输入三维卷积神经网络;

S03:根据迁移学习理论,用大量标记好的自然图像预训练一个三维卷积神经网络模型,所述三维卷积神经网络模型包括输入层、若干卷积层、若干池化层、若干全连接层以及输出层;

S04:用预处理好的三维视网膜OCT图像对训练好的三维卷积神经网络模型进行微调,在所述三维卷积神经网络模型主流网络中间的卷积层后加入分支网络,所述分支网络利用多层感知卷积进一步提取图像局部信息,所述分支网络同样由卷积层、池化层、全连接层和输出层组成,将所述主流网络和所述分支网络的输出层进行融合;

S05:将测试图像按照S02步骤进行预处理,利用S04步骤中微调后的所述三维卷积神经网络模型进行测试,输出分类结果。

采用三维线性插值的方法,对所有三维视网膜OCT图像进行降采样,得到96×96×16尺寸大小的三维图像。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于苏州比格威医疗科技有限公司,未经苏州比格威医疗科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710506132.5/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top