[发明专利]动态神经网络模型训练方法和装置在审

专利信息
申请号: 201710432700.1 申请日: 2017-06-09
公开(公告)号: CN107169566A 公开(公告)日: 2017-09-15
发明(设计)人: 王强;张化祥;房晓南;王振华;郭培莲 申请(专利权)人: 山东师范大学
主分类号: G06N3/08 分类号: G06N3/08
代理公司: 济南圣达知识产权代理有限公司37221 代理人: 张勇
地址: 250014 *** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 动态 神经网络 模型 训练 方法 装置
【权利要求书】:

1.一种动态神经网络模型的训练方法,其特征是,包括以下步骤:

步骤一:将原始一维数据输入到第一层神经元,相应的输出值即该层特征;

步骤二:增加神经元层数,将上层输出的特征作为下一层神经元的输入,得到相应层的特征,重复该步骤直至层数达到预设值;

步骤三:在最终的输出特征与分类的类别之间建立全连接层,通过BP反向传播算法确定全连接层间的连接系数;

步骤四:评价模型性能,若性能达到预期,训练结束;反之,继续在生成的网络模型中增加新的神经元层直至模型性能达到预期;

其中,所述神经元被建模为动态神经元;所述动态神经元的结构为:其中A(l),B(l),C(l)分别为nl×nl阶、nl×ml阶、nl×1阶矩阵,表示神经元状态矩阵、拓扑连接矩阵、以及特征提取矩阵,C(l)T表示矩阵C(l)的转置;x(l),u(l)分别为nl×1、ml×1向量,分别表示一个神经元的状态个数以及能处理的输入数据维数,ml、nl的值与所在的层相关。

2.如权利要求1所述的动态神经网络的训练方法,其特征是,所述神经网络模型中,同一层神经元具有相同的动态结构,不同层的神经元的动态结构可以相同也可以不同;同一层神经元之间没有连接,不同层的神经元之间连接方式为稀疏连接,每个神经元仅与下层相邻的若干神经元有连接。

3.如权利要求1所述的动态神经网络模型的训练方法,其特征是,所述神经元对输入数据进行的处理如下:输入数据经过一层神经元处理后,经过一个状态与输出之间的变换y(1)=C(1)Tx(1),即提取到该层特征y(1),其中矩阵A(1)为该层状态矩阵,满足其特征根具有负实部,矩阵B(1)为该层的拓扑连接,其连接方式为稀疏连接。

4.如权利要求1所述的动态神经网络模型的训练方法,其特征是,所述步骤五还包括:若层数达到某一阈值时模型性能还未达到预期,停止增加新的神经元层,对各层神经元结构矩阵进行调整,将调整结果中性能最好的作为最终的模型。

5.如权利要求1所述的动态神经网络模型的训练方法,其特征是,所述一维数据为语音数据,所述神经网络模型用于语音数据主题、情感、语种的分类或者语音辨识。

6.一种动态神经网络模型的训练装置,其特征是,所述装置包括:

模型构建模块,用于神经网络模型的初始化,将原始一维数据输入到第一层神经元,相应的输出值即该层特征;增加神经元层数,将上层输出的特征作为下一层神经元的输入,得到相应层的特征,重复该步骤直至层数达到预设值;

模型评价模块,用于评价生成的神经网络模型;

模型优化模块,用于所述神经网络模型的优化,若性能达到预期,训练结束;反之,继续在生成的网络模型中增加新的神经元层直至模型性能达到预期;

所述模型构建模块将神经元建模为动态神经元:

其中A(l),B(l),C(l)分别为n(l)×n(l)阶、n(l)×m(l)阶、n(l)×1阶矩阵,表示神经元状态矩阵、拓扑连接矩阵、以及特征提取矩阵;x(l),u(l)分别为n(l)×1、m(l)×1向量,分别表示一个神经元的状态个数以及能处理的输入数据维数,m(l)、n(l)的值与所在的层相关。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东师范大学,未经山东师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710432700.1/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top