[发明专利]基于3D平稳小波的运动轨迹行为识别方法有效

专利信息
申请号: 201710361576.4 申请日: 2017-05-22
公开(公告)号: CN107220607B 公开(公告)日: 2020-05-19
发明(设计)人: 同鸣;李金鹏 申请(专利权)人: 西安电子科技大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62
代理公司: 陕西电子工业专利中心 61205 代理人: 王品华;朱红星
地址: 710071 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 平稳 运动 轨迹 行为 识别 方法
【说明书】:

发明公开了一种基于3D平稳小波变换轨迹的行为识别方法,主要解决现有小波域行为识别技术对时空信息提取不充足和鲁棒性低的问题。其技术方案是:1.对视频进行时空可分离的3D平稳小波变换分解,得到时域高频和中频子带以及空时域各方向子带;2.基于时域高频和中频子带的熵对其进行加权融合;3.基于能量阈值在融合后的子带内提取特征点;4.使用空时域各方向子带构建特征点的小波系数描述子,并根据其欧式距离在相邻帧间匹配特征点,得到运动轨迹;5.在轨迹周围构造小波方向能量直方图特征,并构建该直方图特征的词袋模型,再通过SVM分类器进行识别分类。本发明提高了人体行为识别的准确率,可应用于异常行为检测和人机交互。

技术领域

本发明属于视频处理技术领域,更进一步涉及一种行为识别方法,可用于异常行为检测和人机交互。

背景技术

近年来,计算机视觉作为一门新兴学科发展十分迅速,行为识别作为视频分析和理解的关键技术,重要的学术价值、潜在的商业价值和巨大的应用前景使其迅速成为计算机视觉领域研究的热点和难点,已广泛应用于视频检索、智能监控、机器人导航、智能交通及游戏娱乐等人机交互领域,越来越多的学者和机构在相关方面相继进行了大量的研究工作。人体行为分析的关键就是捕获视频中的运动信息以及帧序列间的关系,如何有效的从视频数据中获取时空信息成为行为识别领域的研究重点。一些学者发现小波变换多分辨率分析能力和优秀的时频分析特性有助于时空信息的挖掘和提取,将其与现有特征描述方法相结合用于行为识别。

(1).Shao L,Gao R.A Wavelet Based Local Descriptor for Human ActionRecognition[C]//BMVC.2010:1-10。这种方法将二维小波变换与兴趣点检测方法相结合用于人体行为识别。该方法在时空兴趣点周围的立方体中进行2D小波分解,可以获得具备鉴别性和可靠性的描述子,特征维度低,对噪声、光照等影响具有一定的容许性,但该方法在进行小波分解时只选取局部立方体内的三个代表平面,对数据的覆盖范围不足,获取空时信息不充分。此外对于运动或背景较复杂的情况,基于兴趣点检测方法鲁棒性较差。

(2).Omidyeganeh M,Ghaemmaghami S,Shirmohammadi S.Application of 3D-wavelet statistics to video analysis[J].Multimedia tools and applications,2013,65(3):441-465。这种方法将3D小波变换与概率统计方法相结合用于人体行为识别。该方法将小波系数使用广义高斯分布拟合,能够在一定程度上获取视频序列空时信息以及小波系数间的依赖性,选用概率模型参数作为特征描述子有助于特征降维,但是仅采用全局特征表示方法对视频结构信息获取不足,且对复杂背景、噪声等干扰较为敏感。

视频中的二维空间域和一维时间域的特性存在很大的差异,因此从直觉上应该针对这两者采用不同的处理方式而不是仅将二维空间方法扩展应用于联合三维空间,沿着视频序列对兴趣点进行跟踪是近些年学者们发现的适于处理上述问题的方法,然而目前并没有学者使用小波变换提取视频中运动轨迹,以将轨迹的优势引入小波域行为识别。

发明内容

本发明的目的在于针对上述已有技术的不足,提出一种基于3D平稳小波的运动轨迹行为识别方法,以更充分地提取视频序列中的时空信息,提高人体行为识别准确率。

实现本发明目的的方案是:利用时空可分离的3D平稳小波变换提取视频中的运动信息,通过基于熵的高频和中频小波系数子带加权融合和基于能量阈值的特征点提取,提高对噪声、背景干扰的鲁棒性,依据连续帧间特征点小波描述子欧式距离最小原则对特征点进行追踪提取运动轨迹,充分获取视频时空信息,并进一步滤除无关特征点。在所提取轨迹周围按不同系数子带方向统计并构建能量特征,最后使用词袋模型编码特征后,输入SVM分类器实现行为识别,其具体实现步骤包括如下:

(1)对行为视频进行时空可分离的3D平稳小波分解:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710361576.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top