[发明专利]一种面向移动社交环境的用户行为分层关联预测方法有效

专利信息
申请号: 201710195205.3 申请日: 2017-03-29
公开(公告)号: CN106991496B 公开(公告)日: 2020-06-30
发明(设计)人: 张晖;王敏;杨龙祥;朱洪波 申请(专利权)人: 南京邮电大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/00
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 刘莎
地址: 210003 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 面向 移动 社交 环境 用户 行为 分层 关联 预测 方法
【说明书】:

发明公开了一种面向移动社交环境的用户行为分层关联预测方法,该方法首先根据目标用户的不同社会属性,获取多个社交群体,对每一个社交群体,根据肯德尔相关系数及交互度获得一个最优的关联用户;其次,将目标用户以及各群体中的最优关联用户分别与自身做关联分析;最后,采用基于最小二乘法的加权方法对各关联分析结果加权融合获得最终的预测结果。本发明考虑到用户的社会属性,对其关联用户划分成不同的社交群体。对移动社交网络的中用户行为进行预测,可有效地提高预测的准确性,适用于用户业务推荐。

技术领域

本发明涉及一种面向移动社交环境的用户行为分层关联预测方法,属于无线通信技术领域。

背景技术

移动社交网络的蓬勃发展已经成为全球范围的社会现象,用户的规模也在不断扩大。由此,可以看出,用户对移动社交网络的关注度日益增加,且移动社交网络正逐渐影响着用户的生活方式。移动社交网络的一个最大的特征就是以用户为中心,而用户又是多个社会角色的复杂体,所以在移动社交网络中的用户具有多样性。用户根据好友关系、相同的兴趣爱好等建立起不同的用户群,不同群体的用户业务行为之间存在相关性。

移动社交网络给人类生活带来了巨大的改变,而且,随着移动社交网络的用户数逐渐增长,用户对业务的需求也越来越多。如何从众多的业务中找出用户感兴趣的内容,已经成为越来越多研究者关注的话题。为了从海量用户行为数据中挖掘出有价值的信息应用于商业领域,有关用户行为分析和预测技术的研究如雨后春笋般涌现出来。在现有的基于移动社交网络的用户行为分析和预测模型中,大部分方法都是建立在同一群体内考虑单个用户及其关联用户的行为历史,而关于群体因素却少有探究。

在马克思哲学中,人的本质是一切社会关系的总和,社会属性是其本质属性。而用户往往具有多个不同的社会属性,如,性别、年龄、学历与职业等,移动社交环境中的用户根据这些属性在各种社交平台上组成互不干扰的社交群体。用户和社交群体之间的关系反映出用户的多个层面的规律,通过社交群体的规律特性,亦反映出用户具有多个群体特性的规律。在任何一个群体中,用户之间通过长期的互动交流,都会产生一个互动和影响机制,同时也相应地带来了群体效应。因此,针对多群体的研究应运而生。对不同的群体分类研究,分析群体的属性特征及其行为规律,从而为目标用户的行为预测提供依据。而且,随着时间的推移,用户的社会属性也会越来越复杂,在此场景下,以用户为中心,提供高质量、个性化的业务已成为未来发展的趋势。

考虑到用户的群体属性,综合利用目标用户自身的行为样本和各群体最优关联用户的行为样本,以实现对目标用户业务行为的预测。通过在每一个群体中选出一个与目标用户最相关的用户来代表目标用户相应社会属性,然后将目标用户以及各群体最优关联用户分别与自身做关联分析,每一个关联分析结果都反映了目标用户仅受到相应社会属性影响而产生的行为。这样,每个群均可找到相应的最具代表性用户,将他们综合起来就能反映目标用户本身,综合他们的行为预测结果,即可实现目标用户行为预测。

发明内容

本发明所要解决的技术问题是提供一种面向移动社交环境的用户行为分层关联预测方法,该方法考虑到用户的社会属性,对其关联用户划分成不同的社交群体。对移动社交网络的中用户行为进行预测,可有效地提高预测的准确性,适用于用户业务推荐。

本发明首先根据目标用户的不同社会属性,获取多个社交群体,对每一个社交群体,根据肯德尔相关系数及交互度获得一个最优的关联用户。其次,将目标用户以及各群体中的最优关联用户分别与自身做关联分析。最后,采用基于最小二乘法的加权方法对各关联分析结果加权融合获得最终的预测结果。

本发明为解决上述技术问题采用以下技术方案:

本发明提供一种面向移动社交环境的用户行为分层关联预测方法,包括以下具体步骤:

步骤1,根据目标用户的不同社会属性,将其关联用户划分为若干社交群体;

步骤2,根据肯德尔相关系数及交互度,获取目标用户在每个社交群体中的一个最优关联用户;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710195205.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top