[发明专利]一种非理想条件下高斯滤波替代框架组合导航方法有效
申请号: | 201710120792.X | 申请日: | 2017-03-02 |
公开(公告)号: | CN106871905B | 公开(公告)日: | 2020-02-11 |
发明(设计)人: | 宋申民;谭立国;赵凯;张秀杰;吴骁航;司译文 | 申请(专利权)人: | 哈尔滨工业大学 |
主分类号: | G01C21/20 | 分类号: | G01C21/20;G01S19/49 |
代理公司: | 23109 哈尔滨市松花江专利商标事务所 | 代理人: | 杨立超 |
地址: | 150001 黑龙*** | 国省代码: | 黑龙;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 理想 条件下 滤波 替代 框架 组合 导航 方法 | ||
本发明涉及一种非理想条件下高斯滤波替代框架组合导航方法,属于航天导航系统领域,为了解决现有的高斯滤波算法将噪声和状态分开处理,导致计算量大和估计精度不高的缺点,而提出一种非理想条件下高斯滤波替代框架组合导航方法,满足:k+1时刻的状态关于前k步量测值的一步后验概率密度函数是高斯的;k+1时刻的实际量测值关于前k步量测值的一步后验预测概率密度函数是高斯的;所述方法包括:建立状态在k+1时刻的预测均值和协方差表达式;建立状态在k+1时刻的后验均值和协方差表达式;基于CKF滤波算法对步骤一和步骤二得到的表达式进行求解,得到修正后的均值和方差;根据修正后的均值和方差修正航向,实现导航。本发明适用于航天飞行器导航系统。
技术领域
本发明涉及一种非理想条件下高斯滤波替代框架组合导航方法,属于航天导航系统领域。
背景技术
导航是引导飞行器、船舶或汽车等沿一定航线从一点运动到另一点的方法,其在军用领域和民用领域都有着广泛的应用。现代导航系统种类繁多,例如全球定位系统(GPS)、天文导航(CNS)、多普勒测速系统(Doppler)、惯性导航系统(INS)等[1]。由于GPS和INS两者之间具有较强的非相似性和互补性,将它们组合起来,便可以取长补短充分发挥各自的优势,同时克服GPS易受地形地物遮挡而导致定位中断和INS定位误差随时间而累计的缺陷。在GPS/INS组合导航系统中,由于系统本身元器件的不稳定性以及外部应用环境不确定因素的影响,导致系统噪声有时具有相关特性,比如当系统的输入源与传感器的输出且传感器测量值具有随机特性时,系统的过程噪声和量测噪声协方差将不为零。对于采用伪距的表达方式的紧耦合模型,并且由于实际应用中通信带宽的限制,使得组合导航系统可能同时具有非线性、时滞和噪声相关的特性,因此,设计更一般的算法是十分有必要。
下面简要介绍上述三类问题解决方案的发展现状并由此引出本文的算法。
针对常见的非线性系统,如制导或导航系统[2,3],目标跟踪系统[1]等,在贝叶斯框架下依据概率密度非线性滤波算法可以分为两类。一类是高斯滤波算法[8],如EKF[5]是以非线性函数的一阶泰勒展开形式来近似函数本身,对于强非线性函数近似能力较差,且存在计算Jacobi矩阵的问题,计算量大,不适合实时计算;UKF[6]算法是利用无迹变换来逼近状态后验概率密度函数,由于利用了样本点,因此不再需要计算Jacobi矩阵,但是在参数选择不当的时候容易造成状态误差协方差负定;Nrgaard M等提出的DDF算法[9]以斯特林多项式插值的方式去近似非线性函数,避免了陷入局部线性化的问题;CKF[7]算法是利用球径容积法则来实现对状态后验概率密度函数的近似,相比于UKF算法,减少了一个样本点但是数值稳定性却有了很大的提高。另一类是非高斯滤波算法,例如PF,但是计算量很大,不适合实时计算。
针对噪声相关问题,例如迎风航天器模型的过程噪声和量测噪声[10],部分学者提出了解相关框架[11],他们在状态方程中加入前一时刻的量测方程,将新构造出伪状态方程作为新系统的状态方程,通过选取合理的增益系数,达到新系统过程噪声和量测噪声解耦的目的,从而利用标准KF框架进行求解;另一部分学者采用两步预测代替一步预测的方式[12],从而使得噪声之间相关性不再存在达到解决问题的目的;后来,经学者GuobinChang指出这两种方法是等价的[13]。文章[14]通过将噪声看做是状态增量联和状态一起进行估计,给出了一种新颖的解决噪声相关问题的方法,并从理论上证明了其与前两种方法的等价性,仿真说明了此方法对解决线性系统且噪声相关问题的有效性。
针对量测量不能即时获取以及过程噪声和量测噪声相关的情况,研究主要从两方面展开,一类是确定性时滞,一类是随机时滞。针对确定性时滞问题目前主要的解决方法有重计算法、Alexander法和状态增量法等[15];对于随机时滞问题,一般以满足Bernoulli分布的随机序列来构造新的量测数据,Hermoso-Corazo A等[16]针对一步随机时滞和两步随机时滞状态估计问题,给出了其在EFK算法和UKF算法框架下的处理方法。Wang X等[17]利用对状态后验概率密度估计的两步预测思想,融合状态增量的方法,解决了带有随机时滞和相关噪声的状态估计问题。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710120792.X/2.html,转载请声明来源钻瓜专利网。