[发明专利]多策略粮虫视觉检测方法有效

专利信息
申请号: 201710053006.9 申请日: 2017-01-24
公开(公告)号: CN106815819B 公开(公告)日: 2019-08-13
发明(设计)人: 王贵财;靳小波;费选;李磊;魏蔚 申请(专利权)人: 河南工业大学
主分类号: G06T5/00 分类号: G06T5/00;G06T5/10;G06T5/30;G06T5/50;G06T7/11;G06T7/194
代理公司: 郑州异开专利事务所(普通合伙) 41114 代理人: 韩华
地址: 450001 河南省郑*** 国省代码: 河南;41
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 策略 视觉 检测 方法
【说明书】:

发明公开了一种多策略粮虫视觉检测方法,一、获取所述粮虫图像;二、对粮虫图像进行奇异值分解得到图像数据矩阵;三、采用symN小波基对粮虫图像进行2层小波分解和重构;四、采用Otsu方法对粮虫图像进行二值化;五、对二值图像膨胀运算;六、基于Blob算法对二值化后的粮虫图像进行Blob连通域分析,从而达到粮虫检测目的。本发明解决了传统人工储粮活虫检测非常耗时且效率很低的问题,通过面积参数和周长参数进行快速、准确、无损自动检测粮虫;同时解决了现有粮虫视觉检测方法无法克服粮仓复合环境影响的问题,实现了既能准确检测粮虫数目又能精确标记粮虫位置目的。

技术领域

本发明涉及粮虫视觉检测方法,尤其是涉及多策略粮虫视觉检测方法。

背景技术

粮虫危害是粮食储藏中较为严重的问题之一,粮虫准确检测是进行粮虫综合防治的一种有效手段。粮虫检测方法有扦样法、诱集法、声音识别法、近红外法和视觉检测法等。自从美国学者Zayas采用视觉检测技术对散装小麦仓中的谷蠹成虫进行离线研究,为粮虫的快速检测和分类开辟了新途径。视觉检测法具有准确度高、劳动量小、粮虫图像可视化、不局限于粮库的分散性和地域的限制、便于同粮库现有软件系统集成等优点,近年来一直是粮虫检测领域的研究热点,也是粮虫检测的主要技术手段。

准确识别是粮虫准确检测的核心内容。粮虫种类多、体形小且形态结构较复杂使得实现粮虫检测成为最困难的经典问题。学者们针对粮虫视觉检测方法围绕特征获取、粮虫识别(粮虫分类)和虫群密度估计等领域开展了大量而深入的研究并取得若干富有成效的结果。例如廉飞宇等分别利用图像色彩块、HVS彩色图像差值技术和运动目标检测实现粮虫视频图像序列的静态粮虫图像分割提取。又如徐昉等提出基于图像识别的粮虫在线检测新方法,将机器视觉与模式识别技术相结合实现粮虫检测,利用安装有CCD镜头和称重等传感器的特殊取样装置抽取粮食样本并实现粮虫检测。再如张红梅等也对BP神经网络进行改进并应用于粮虫识别,既有较强的自适应性还对有噪声、残缺的粮虫图像有一定的识别效果。

近年来粮虫视觉检测虽取得一些进展,但急切需要一种高效便捷的计算机测虫方法,旨在利用开发工具和图像处理算法的优点,来实现对粮虫的高效准确的检测。

发明内容

本发明目的在于提供一种高效准确的多策略粮虫视觉检测方法。

为实现上述目的,本发明采取下述技术方案:

本发明所述的多策略粮虫视觉检测方法,包括下述步骤;

第一步、通过取样器将藏在粮堆内部的活体粮虫分拣出来,然后通过视觉设备将所述活体粮虫拍摄以获取所述粮虫图像;

第二步、对所述粮虫图像进行奇异值分解得到图像数据矩阵,其中U和V分别是和的正交矩阵,为的元素为非负的对角矩阵,为V的转置;将值全置为0形成新的,然后与和重建图像数据矩阵;最后通过对图像数据矩阵求差,以增强图像中的粮虫信息;

第三步、采用symN小波基对所述粮虫图像进行2层小波分解和重构;根据小波分解子带分解系数相关性的特性,对大于阈值的高频系数倍乘4,低频系数缩小为原值的;即:

其中,为新低频子带系数;为新水平高频子带系数;为新垂直高频子带系数;为对角线方向上的新高频子带系数;为原始低频子带系数;为原始水平高频子带系数;为原始垂直高频子带系数;为对角线方向上的原始高频子带系数;

对于图像来说,其离散二维小波多尺度分解算法如下:设原始图像为,dwt2为二维离散小波变换;小波分解为:

其中,为原始低频子带系数;为原始水平高频子带系数;为原始垂直高频子带系数;为对角线方向上的原始高频子带系数;为待分解粮虫图像;

其离散二维小波多尺度重建算法如下:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河南工业大学,未经河南工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710053006.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top