[发明专利]深度神经网络训练方法及人脸识别方法在审
申请号: | 201710022621.3 | 申请日: | 2017-01-12 |
公开(公告)号: | CN106778684A | 公开(公告)日: | 2017-05-31 |
发明(设计)人: | 黄飞;田泽康;侯立民;邓卉;谢建 | 申请(专利权)人: | 易视腾科技股份有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 北京联创佳为专利事务所(普通合伙)11362 | 代理人: | 郭防 |
地址: | 214135 江苏省无锡市无锡菱湖大道*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 深度 神经网络 训练 方法 识别 | ||
技术领域
本发明涉及图像处理领域,具体而言,涉及一种深度神经网络训练方法、一种人脸识别方法及一种基于多深度神经网络融合的人脸认证方法。
背景技术
人脸识别技术是利用图像捕捉设备采集用户的面部数据并由计算机通过特征提取和匹配,识别出用户身份的技术。其主要步骤包括:(1)人脸检测,即从图像捕捉设备采集的图像中定位人脸的位置,提取出人脸对应区域的图像;(2)特征提取,即从人脸区域的图像中通过计算,提取出有效的模式特征;(3)特征识别,对提取的模式特征与人脸特征库中的各种进行对比,从而识别出用户身份。
人脸认证是人脸识别的一个分支,要求计算机不仅可以识别人脸库中已有的人脸,还要拒绝不属于人脸库中的人脸。人脸认证在签到系统,监控领域,人机交互,系统登录等诸多领域有广泛的应用。
现有的识别、认证技术在实施时,人脸距离图像采集设备的距离变化造成采集图像的清晰度变化,距离较远时细节减少造成识别性能下降;另一方面由于人脸姿态变化,捕捉到人脸角度也在变化,导致采集到的图像细节变化,有的情况下细节会丢失,从而造成识别准确度下降。
发明内容
本发明为了解决现有识别成功率低的技术问题,第一方面提供了一种深度神经网络训练方法,包括如下步骤:
获取带有分类信息的人脸数据集;
根据所述分类信息对所述人脸数据集进行分类,并将所述人脸数据集进行对齐归一化处理,形成训练数据集;
将所述训练数据集带入到深度神经网络模型中,根据所述深度神经网络模型的损失函数及训练参数对所述深度神经网络模型进行训练,得到优化深度神经网络模型;其中,针对不同清晰度的所述训练数据集,所述深度神经网络模型包括多个独立的深度神经网络模型,每个独立的深度神经网络模型对应一个所述损失函数。
进一步地,在将所述训练数据集带入到深度神经网络模型中之前还包括步骤:针对每个所述独立的深度神经网络模型所应对的清晰度,对待输入到所述独立的深度神经网络模型的训练数据集中的图片进行缩放和/或剪裁。
进一步地,根据所述损失函数和训练参数采用随机梯度下降法对所述深度神经网络模型进行训练。
本发明另一方面提供了一种人脸识别方法,包括如下步骤:
建立人脸模型库,所述人脸模型库中至少包括1个人脸的模型;
使用所述人脸模型库和权利要求1~4中任一建立的优化深度神经网络模型,对待识别人脸图片进行识别,以确定所述待识别人脸属于人脸模型库中某一类的人脸标识。
进一步地,所述建立人脸模型库的步骤包括:
获取待识别的人脸对应的标识和人脸图片集合;
对所述人脸图片集合中的所有图片进行对齐处理;
将对齐后的人脸图片集合中的图片分别输入到所述神经网络模型中,获取特征向量集合,所述特征向量集合中的单个特征向量对应一张所述图片;
将所述特征向量集合及对应的所述人脸标识记录到所述人脸模型库中。
进一步地,所述对待识别人脸图片进行识别的步骤包括:
获取待识别人脸图片并进行对齐处理;
将对齐后的待识别人脸图片分别输入到所述神经网络模型中,获取特征向量集合,所述特征向量集合中的单个特征向量对应一个神经网络模型;
将所述特征向量集合与所述人脸模型库进行比对,输出最高相似度值及对应最高相似度值的人脸标识;
将所述最高相似度值与阈值比较,如果大于阈值则输出所述人脸标识。
进一步地,所述将所述特征向量集合与所述人脸模型库进行比对,输出最高相似度值及对应最高相似度值的人脸标识的步骤包括:将所述特征向量集合与所述人脸模型库中各类别人脸进行比对获取各类别对应的相似度,将各类别对应的相似度值中的最高值作为所述最高相似度,将所述最高值对应的类别作为所述对应最高相似度值的人脸标识。
进一步地,所述将所述特征向量集合与所述人脸模型库中各类别人脸进行比对获取各类别对应的相似度的步骤包括:将所述特征向量集合中每个特征向量与所述人脸模型库中一个类别图片对应的多个特征向量进行对比,求取多幅图片多个模型对应的相似度集合,然后根据所述相似度集合进行融合,求取模型融合后相似度集合,所述模型融合后的相似度集合对应一个类别中多幅图片,对所述模型融合后的相似度集合进行归纳,获得所述类别对应的相似度。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于易视腾科技股份有限公司,未经易视腾科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710022621.3/2.html,转载请声明来源钻瓜专利网。